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Adaptive Forward-Inverse Modeling of Reservoir Fluids Away 
from Wellbores 

I. Preface: 

This is a report of findings submitted to the Prediction Team of the DeepLook Oil and Service 
Industry Group by the Lawrence Livermore National Laboratory (LLNL) as deliverables for the 
Phase I project, entitled “Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from 
Wellbores”. The deliverables include: a report of results, listing(s) of commands that construct 
and execute codes for selected test problems, and an evaluation with recommendations regarding 
continuance of this project, including considerations of possible extensions to 3-D and additional 
technical scope. 

II. Executive Summary: 

This Final Report contains the deliverables of the DeepLook Phase I project .entitled, “Adaptive 
Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores”. The deliverables are: (i) a 
description of 2-D test problem results, analyses, and technical descriptions of the techniques used, 
(ii) a listing of program setup commands that construct and execute the codes for selected test 
problems (these commands are in mathematical terminology, which reinforces technical 
descriptions in the text), and (iii) an evaluation and recommendation regarding continuance of this 
project, including considerations of possible extensions to 3-D codes, additional technical scope, 
and budget for the out-years. 

The far-market objective in this project is to develop advanced technologies that can help locate 
and enhance the recovery of oil from heterogeneous rock formations. The specific technical 
objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling 
techniques [Gelinas et al, 19981 that seek to enhance estimates (images) of formation permeability 
distributions and fluid motion away from wellbore volumes. This goes to the heart of improving 
industry’s ability to jointly image reservoir permeability and flow predictions of trapped and 
recovered oil versus time. The estimation of formation permeability away from borehole 
measurements is an ‘inverse’ problem. It is an inseparable part of modeling fluid flows throughout 
the reservoir in efforts to increase the efficiency of oil recovery at minimum cost. Classic issues of 
non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution 
techniques have historically impeded progress in reservoir parameter estimations. Because 
information pertaining to fluid and rock properties is always sampled sparsely by wellbore 
measurements, a successful method for interpolating permeability and fluid data between the 
measurements must be: (i) physics-based, (ii) conditioned by signal-processing tenets, and (iii) 
solved with sufficiently rigorous mathematical and numerical techniques. Such a methodology is 
applied in this project, as we extend the F-I modeling methods developed at LLNL for ground water 
remediation to DeepLook reservoir problems involving transient multiphase flows. The results 
obtained at this juncture are encouraging; and the proposed objectives of Phase I have been 
achieved. 

The text of this report begins in Section III with a statement of the problem being addressed and 
the practical motivations. It continues with a discussion of the long-standing fundamental 
difficulties that need to be resolved or mitigated for successful o&comes to be achieved. Alternative 
stochastic modeling concepts and approaches that have been, or could be, applied in reservoir 
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parameter estimation problems are then considered. From that overview discussion it is apparent 
that the extended F-I approach in this project was purposefully designed to meld stochastic moment 
equations of fluid physics (Appendix A) with signal-processing techniques (Appendix B). Robust 
mathematical and numerical solution techniques were necessarily brought forth (Appendix C) to 
solve the resulting nonlinear systems of partial differential equations (PDEs). Six developments in 
computational physics were critical for successful implementation of this integrated F-I approach in 
Phase I; they included: 

l Novel interpolation techniques 

l Spatial filtering techniques 

l Simultaneous solution of F-I and spatial-filtering PDEs 

l F-I model calibration techniques 

l Novel PDE solution schema 

l Dynamic unstructured adaptive-grid PDE solution methods 

The adaptive-grid PDE solution algorithms and code-generation capabilities that were used in 
this work are commercially available in a toolkit known as FZexPDE [Nelson,1998, and Backstrom, 
19981. Pending publication of detailed technical articles in scientific journals, the stochastic 
theoretical basis and mathematical techniques in this work are addressed briefly in Appendices A 
and B. A brief description of FZexPDE toolkit features is presented in Appendix C. 

Section IV presents results from testing the feasibility of proposed F-I modeling concepts and 
computational techniques. Example problems used in the feasibility-testing were based upon a 
transient 2-D black oil model (BOM) from petroleum engineering. Numerous test cases were 
solved and verified successfully in efforts to address such basic questions as: “What is the best 
image quality that might be expected from F-I permeability interpolations between wellbore 
measurements with data sets that range from very sparse to very dense?“; “How to extract the 
greatest amount of information from sparse data sets for reservoir systems, recognizing that these 
problems do not generally satisfy linearity and other assumptions needed in conventional Fourier- 
tranform-based signal-processing techniques?“; “How to implement alternative spatial filtering 
techniques in physical configuration space, in lieu of Fourier-transform techniques?“; and “How 
to suppress noise in both forward and inverse model simulations?” These issues are critical to 
successful advances toward end-objectives. To investigate these issues in-depth, test cases were 
posed and solved for both densely and sparsely sampled data --- with and without spatial filtering 
constraints applied. Results are summarized as follows: 

Forward Model Verifications 

l Benchmarks and verifications were established for: BOM formulations, FZexPDE 
algorithms, and forward model simulations of fluid pressure and saturations. 

l Two example problems were developed from petroleum engineering for ground-truth 
verifications. One was a water-flood scenario on a 2-D horizontal domain, and the other 
was an oil-dome scenario on a 2-D vertical domain. ‘Measured’ data were abstracted 
from ground-truth solutions at discrete locations and used as datum points in test cases. 

2 
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l Accuracy of forward model solutions was demonstrated to be important in the F-I 
modeling approach because inverse solutions of permeability are sensitive to not only 
fluid pressure and saturation but also their gradients. 

l FZexPDE solutions resolved the evolution of sharp, disparate pressure and saturation 
fronts extremely well over the entire problem domain, including local injection/extraction 
wells. Resolution of evolving fronts is a significant determinant of predicted times, paths, 
and rates of fluids arriving at production wells, versus remaining in the formation, over 
time. 

l Forward model solutions are additionally important in these F-I techniques because their 
dependent variables (pressure and saturation) are ‘signals’ that carry the information from 
which permeability distributions are determined in inverse PDE solutions. 

Inverse Model Verifications 

The resolution of permeability images is a nebulous function of data sparsity. Test cases were 
thus constructed to span a broad spectrum of data density/sparsity. We examined the relative 
amounts of information that could be retrieved in F-I images from varying amounts of finitely 
sampled data. Results are presented (Section IV) for data sets ranging from the most dense 
sampling (>200,000 datum points) to the most sparse sampling (one datum point) of pressure 
signals. 

Densely Sampled Cases: 

l High-quality images of permeability were produced from densely sampled pressure data 
(typically thousands to hundreds of thousands of datum points). Results demonstrated 
that considerable resolving power is attainable with the F-I techniques and FZexPDE 
solution algorithms. In addition these results provided benchmarks for examining the 
significance of data sparsity, which is always a central issue in practical reservoir 
applications. 

l Inverse solutions with hundreds of thousands of ‘measurements’ (Section IV) support the 
fact that images from ajhite number of datum points cannot be truly perfect (unique) -- 
no matter how densely they’re spaced -- due to absent information between datum 
points. 

l A suitable level of spatial filtering was generally beneficial for image quality, even when 
very densely sampled data were tested. 

l Effective application of spatial filtering in the F-I method was subject to problem-specific 
factors, including: data density/sparsity, permeability contrast ratios (at formation 
interfaces), information propagation modes, and numerical algorithm robustness. 

Sparsely Sampled Cases: 

l With Spatial Filtering: 
- F-I solutions of permeability were stable with spatial filtering applied effectively, 

regardless of data sparsity. Results are presented for cases with 1, 20, 75, and 
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300 pressure datum points in the oil-dome example. These results fairly represent 
countless other cases that were solved with different data sets. 

- The permeability images obtained in all cases were plausible representations of 
ground-truth, commensurate with data sparsity. Image resolution improved 
progressively as the number of datum points increased, consistent with original 
expectations. 

- The amount of information contained in images from relatively small numbers of 
datum points (5-20) sometimes exceeded original expectations, which were based 
on elementary data-sampling criteria. 

l No Spatial Filtering: 
- F-I solutions of permeability were unstable when pressure data was too sparse, as 

is true in many inverse techniques. 
- Unstable solutions resulted when fewer than 75 ‘measured’ pressure datum points 

were tested in the oil-dome example. This is a dramatic departure from the stable 
F-I images that were obtained with spatial filtering applied. 

It is apparent in Phase I results, and in previous ground water results (Appendices A and B), 
that the combined signal-processing and physics-based F-I techniques, solved with rigorous 
mathematical and numerical methods, produce credible images of permeability away from 
wellbores, commensurate with the available data. In some instances, where many other existing 
techniques would be manifestly unstable, the F-I method produced surprisingly good images from 
sparse data. Insights gained in Phase I efforts suggest that additional advances may materialize as 
these principles and solution techniques are developed more fully over time. For example, data sets 
observed at specified times (snapshots) during welltield operations may serve as additional 
constraints for enhancing permeability images. Forward model results further suggested that oil 
recovery depends on formation permeability texture and contrast ratios, physical scale and shapes 
of rock heterogeneity, and disparate-scale pressure and saturation gradient evolution. A capacity to 
better resolve these sensitive features with data from multiple snapshots potentially opens promising 
new paths toward attainment of far-market objectives. 

Section V presents recommendations regarding continuation of this project. From a critical 
evaluation of Phase I results, we recommend continuation of this project to a Phase II effort. The 
objective in Phase II would be to further expand the concepts and methods tested in Phase I by 
including: (i) representative capillary pressure curves and other relevant reservoir data, (ii) further 
exploration of the practical effects of undersampling on image resolution in more realistic physics 
models, and (iii) incorporating time-dependent production data with other transient data. We 
believe that it is important at this stage of development to rule out possible show-stoppers in three 
essential areas before expending the much greater levels of effort that would be required with 3-D 
codes and additional technical scope in a final Phase III: First, more general representations of 
capillary physics may extend the range and possible severity of nonlinear coupling and uncertainty 
effects that need to be assessed. Second, the nature and significance of image distortion between 
wellbores must be assessed for a sizeable range of small-to-large data sets for practical wellfield 
circumstances. With favorable outcomes, these results may provide an early view of the value of 
individual pressure measurements and the significance of their number and locations relative to 

4 
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production and/or injection wells. Third, the inversion techniques applied for steady-state ground 
water problems (Appendix B) will extend, theoretically, to inversions of data gathered at multiple 
times during well-field operations. This is a key concept for economically enhancing image 
resolution from sparse data, which needs to be confirmed in 2-D, with oil-water physics. Each of 
these extensions represent formidable tasks that we believe can, and must, be resolved in Phase II, 
on the path toward achievement of final far-market goals. 

III. Statement of the Problem and Overview: 

To maximize oil production, water may be injected into a reservoir to increase pressure 
gradients that can drive additional oil to wells in successful designs. For greatest success, fluid 
fronts must remain stable and move oil along the most advantageous pathways via optimal injection 
and production well configurations. If the front(s) become unstable, injected fluids can break 
through, leave too much oil behind, and possibly spoil the condition of the reservoir for future 
recovery efforts. Similarly, if the most productive locations and pathways for water-drive are not 
identified, maximum recovery may not be achieved. Knowledge of such regions during initial 
production and prior to break-through could greatly increase total recovery through a more effective 
strategy for in-field drilling and production operations. A key element in these problems is that 
reservoirs are usually deep beneath the surface, where moving fluid fronts and essential subsurface 
properties that determine flow paths cannot be observed directly and must be estimated between 
borehole locations. 

In efforts to critically determine subsurface behavior, one can study how energy and/or mass is 
propagated through the system. This may be done by specifying how varying quantities within the 
system (temperature, pressure, fluid velocity, and saturations) change as functions of time. Such 
varying quantities may be viewed as signals because they measure excitations and responses of the 
system. Signals play a dual role: First, they are used to describe the performance of reservoir 
operations, frequently in conjunction with forward models that forecast transient flow behavior and 
production of fluids from wells in the system. Second, signals carry information that is needed in 
inverse problems to determine rock properties, as well as the interactions among various fluid and 
formation features in the complete reservoir. This dual role of signals suggests that interpolations 
of pressure and rock properties between wellbores involves a circular modeling process with 
forward and inverse flow solutions. On the one hand, interpolations of pressure data must satisfy a 
forward mass balance equation, which depends upon values for spatially-distributed rock properties 
(porosity and absolute permeability). On the other hand, inverse models are solved for values of 
absolute permeability between wellbores from interpolated pressure and pressure-gradients, which 
must ultimately satisfy the forward mass balance equation and measured data. An iterative forward- 
inverse (F-I) process, alone, achieves mutually consistent interpolations of pressure, pressure- 
gradients, saturations, and permeabiltiy that finally satisfy both the forward and inverse flow 
equations. All of the interpolated variables must additionally respect signal-processing principles 
for sparse sampling effects. In other words, the forward, inverse, and signal modeling processes are 
fundamentally inseparable. Hence advances in F-I modeling will play a potentially pervasive role in 
optimization of monitoring strategies, estimation of formation properties from sparse data, flow 
predictions, uncertainty/sensitivity analyses, and re-evaluations of the subsurface behavior 
consistent with signal theory as new data are obtained. 
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Circular modeling, inverse modeling, and history-matching are variously related methods for 
estimating porous media properties and fluid behavior between measurements in wellbores. They 
all address a critical technical obstacle that confronts every subsurface project: Interpolations 
between borehole data are non-unique; and existing parameter estimation methods are 
constrained either weakly by, or at variance with, essential laws of physics, mathematics, and 
signal-processing principles between datum points. Such parameter estimation problems are 
clearly ill-posed because material properties can never be sampled and measured perfectly, at any 
physical scale. So physical properties deduced from finitely sampled data (e.g., for fluid 
distribution, pressure, permeability, porosity) will always be distorted to some degree, which makes 
predictions of future flow behavior, production yields, and costs subject to more or less uncertainty. 
The fact that an indefinite number of admissible parameter realizations generally ,exists for 
discretely sampled data does not mean that subsurface parameter estimation is meaningless. It 
indicates that well-founded and well-executed concepts of physics, mathematics, and signal- 
processing are needed to extract maximum information from the available data. The techniques 
used should consider both hard and soft data; and they should ultimately encompass sensitivity 
coefficients, best solutions, and suitable measures of uncertainty propagation. 

In addition to manual history-matching methods, numerous deterministic and/or statistically- 
based inverse theories and numerical algorithms (codes) have been advanced over the past twenty- 
five years. A common thread is that all of the methods have significant shortcomings at this time. 
For more detailed descriptions of individual inverse methods, one can consult numerous review 
articles, text books, and surveys [Zimmerman et al, 1998; McGlauglin and Townley, 1996; Carle 
and Fogg, 1996 a and b; Sun, 1994; Newman and Orr, 1993; Gelhar, 1993; Dagan, 1989; Carrerra 
and Newman, 1986a; Yeh, 1986; and Beran, 19681. We therefore reviewed at the outset of Phase I 
the full backdrop of physics principles and inverse solution techniques that have been applied in 
porous media flow problems. Noted immediately was the fact that, although physical systems 
sometimes behave deterministically, they are nonetheless stochastic in their basic nature because 
fundamental uncertainties exist at all scales of measurement. Hence both dynamics and statistics 
must be considered in order to extract essential information from measured data. 

To review the fundamental basis of stochastic modeling one looks to kinetic theory, where 
dynamical and statistical axioms of physics are used to generate continuum flow equations of mass, 
momentum, and energy balance. Two theoretically equivalent approaches are found: one is a 
random field approach, and the other is represented by a heirarchy of statistically averaged moment 
PDEs’. A moment PDE approach is used in this project because, among other factors, new PDE 
software tools have recently become available to help resolve classic long-standing difficulties 
associated with non-uniqueness, noise, nonlinearity, mathematical instability, and inadequate 
numerical PDE solution methods that previously thwarted progress in moment PDE approaches2. 
The physics and mathematical techniques developed in this F-I modeling approach may also serve 
well in several other existing stochastic and least-squares methods, as well as in manual history- 
matching approaches to parameter estimation. 

’ Both quantum and classical mechanical representations have been applied to analyze stochastic systems in diverse 
technical problems for several decades, as discussed and referenced in the Theory section that is presented in Appendix 
A. 

’ Interested readers may wish to peruse the Theory section in Appendix A to examine other factors that presently 
recommend consideration of the moment PDE approach. 

6 
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FZexPDE and PDEuse [Nelson,1998 and Backstrom, 1994,1998] are two commw$dly 
available toolkits that provide state-of-the-art numerical PDE solution techniques and automated 
code-writing capabilities for solving diverse scientific problems. They enable general practitioners 
to solve the nonlinear PDE systems that arise in F-I reservoir modeling, where the underlying 
assumptions of alternative Fourier-analysis-based inverse and signal-processing techniques do not 
generally apply. These toolkits have yielded high levels of accuracy and work-saving economies in 
the development of this F-I modeling methodology by their effective utilization of novel code- 
generation software. Some of the most robust adaptive-grid PDE solution methods that have 
emerged in applied mathematics research over the past twenty five years are the “engines” in these 
toolkits. (Additional applications of PDEuse and FZexPDE in diverse disciplines can be seen in the 
text by Backstrom [ 19981.) The FZexPDE toolkit by Nelson [1998] has been used to solve all of 
the examples presented in this report. Looking ahead, extensions to 3-D reservoir modeling in the 
out-years will be paced by the performance of recently released 3-D FZexPDE software. 

A formidable problem in parameter estimation techniques is the need to effectively manage 
noise effects. Noise in stochastic simulations may correspond to both physical and non-physical 
sources. Physical noise sources would be associated with natural fluctuation phenomena in the 
flow system, per se, and with physical measurement processes. Non-physical noise sources would 
include interpolations of sparsely sampled data, faulty conceptual models, and numerical errors in 
forward and inverse model simulations. Numerical PDE solution errors and faulty concepts are 
problematic in model simulations because they frequently cannot be distinguished from physical 
effects. They may then debilitate one’s capacity to deal effectively with the legitimate problems 
posed by non-uniqueness and mathematical instability. It was thus important to identify and 
eliminate at the outset not only such non-physical noise sources as numerical PDE solution errors 
but also failures to respect signal-processing principles for sparsely sampled data. The practical 
working principle being applied here is that the space of admissible, mutually-consistent 
permeability and pressure realizations is expected to shrink as increasingly restrictive constraints, 
including elimination of non-physical noise and other modeling artifacts, are used to condition 
parameter realizations. Some key advances by Gelinas et al [ 1998, and this report] enabled the F-I 
methods to apply this working principle productively in Phase I. Included in these advances are: 

l Novel interpolation techniques: 

A modified finite element method was constrained to agree with wellbore measurements 
while solving forward and inverse flow equations. Resulting flow solutions respect the 
discrete wellbore data and are, moreover, intrinsic physics-based interpolators of pressure 
and permeability between wellbores. 

l Spatial filtering techniques: 

Flow data interpolations must be filtered (smoothed) so that their spatial frequency 
spectra are consistent with discrete sampling principles [Bracewell, 1986; McGillem and 
Cooper, 19841. Ancillary PDEs were developed to spatially filter both pressure and 
pressure-gradients in physical configuration space consistently with forward and inverse 
PDE solutions. This technique enables one to effectively calibrate nonlinear continuum 
flow solutions (interpolations) with discretely sampled data. 
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l Simultaneous solution of F-I and spatial-filtering PDEs: 

Nonlinear systems of forward and inverse flow PDEs were solved simultaneously with 
spatial-filtering PDEs in order to both suppress noise and help mitigate mathematical 
instability. 

l F-I model calibration techniques: 

The inverse flow equation was solved and calibrated with permeability data according to 
rigorous Cauchy criteria, which are otherwise violated in many parameter estimation 
techniques. 

l Novel PDE solution schema: 

Continuum mappings of flow characteristics were solved from pressure data with a novel 
PDE scheme, in lieu of calculating discrete characteristics from ordinary differential 
equations (ODES) that do not fill the physical domain. This schema facilitates rigorous 
calibrations of inverse PDE solutions according to Cauchy criteria. 

l Dynamic unstructured adaptive-grid PDE solution methods: 

Numerical errors and other modeling artifacts were reduced markedly by using dynamic 
unstructured adaptive-grid methods to solve both signal-processing and F-I flow PDEs. 
This improves the resolution of both permeability images (inverse solutions) and flow 
images (forward solutions) on a self-consistent basis. 

These composite F-I modeling techniques help mitigate the classic perils posed by mathematical 
instability, noise, and non-uniqueness. To execute these techniques successfully, it was necessary 
to employ the FZexPDE toolkit [Nelson,1998, and Backstrom, 19981. Pending publication of 
detailed technical articles in scientific journals, the stochastic theoretical basis and mathematical 
techniques applied in this work are addressed briefly in Appendices A and B. A brief description 
of FZexPDE toolkit features is presented in Appendix C. Such key aspects of parameter estimation 
as 3-D simulations, uncertainty propagation, sensitivity coefficients, “best solution” techniques, 
etc., were not included within the scope and resources of Phase I. There appears to be considerable 
promise, however, for significant new advances to be made in some of these omitted topics in the 
near future, as a natural extension of the F-I modeling and PDE solution techniques used in the 
present work. 

rv. Examples and Results 

This section examines results of numerous test cases that were posed and solved in terms of a 
black oil model (BOM) for oil-water systems from petroleum engineering. The BOM represents a 
two-phase (oil-water) immiscible, incompressible flow system, with zero capillary pressure. It 
provides the conceptual model basis for two example problems that are used in this section to 
assess the feasibility of the F-I modeling concepts and mathematical techniques. The example 
problems were constructed to have ground-truth solutions for verification purposes. One example 
problem is an idealized water-flood scenario on a 2-D horizontal rectangular domain with zero 
gravitational forces; and the other is a 2-D vertical oil-dome water-driven model with gravitational 
forces. The flow systems in all cases are described by the mean flow equation, with stochastic 
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residual flux terms taken to be negligible. Residual fluxes are second-order statistical fluctuation 
terms that contribute to the rate of change of the dependent variable in the mean flow equation, 
They act like other source terms that generally appear in the mean flow equation. Their neglect is 
not a serious limitation in proof-of-concept assessments at this stage of development. (Additional 
implications pertaining to this assumption are discussed in Appendix A; and a detailed 
development of the BOM is presented in Appendix E.) 

Dynamic adaptive-grid PDE solution techniques in the FZexPDE toolkit facilitate problem 
verifications. They enable users to arbitrarily specify a PDE solution accuracy that is to be achieved 
in each problem run. The PDE solver adapts unstructured spatial and temporal numerical grids 
automatically in an iterative numerical solution process. Numerical integration cycles are executed 
in FZexPDE until both global and local accuracy criteria are satisfied internally. If a user-specified 
accuracy goal is not attained, a code run will usually not terminate gracefully. But in all instances a 
record of diagnostic information reports the state and progress of the numerical solution process 
during each attempted run. The combination of such accuracy-controlled adaptive-gridding 
methods with informative run-time performance diagnostics accelerates test case verifications, 
largely because failures of the PDE solver to deliver demanded accuracy (within practical limits) 
will usually lead quickly to the identification of inappropriate concepts, mathematical errors, 
inconsistent data, inadequate or misapplied algorithms, or other sources of error. To practically 
verify that PDE solutions have ‘converged’, several runs are typically executed with progressively 
greater accuracy demanded in each successive run, until the solutions are deemed to have 
approached a ‘true solution’, or not. If code changes, including entirely new conceptual or 
mathematical models are required, the automated code-writing features in FZexPDE readily produce 
new codes, which further facilitate code and test-problem verifications. 

IV-l Detailed Descriptions of Example Problems and Results 

Example Problem 1: Horizontal (2-D) water-drive problem. 

Forward Model Verifications 

The first example problem (Figure 1) simulates an idealized water-flood scenario on a 2-D 
horizontal rectangular domain, with zero gravitational forces. This problem was also considered in 
a recent article by Saad and Zhang [ 19981. The BOM formulation in equations (E- 1) - (E-9) of 
Appendix E was used in Saad and Zhang’s work, and in our work here. Since the permeability is 
constant in this example, the inverse solution for K is trivial. So the objective in this example was to 
benchmark the dynamic adaptive-grid finite element solution techniques in FZexPDE against a 
current alternative adaptive-grid method, such as the one applied in the IMPES (Implicit Pressure- 
Explicit Saturation) approach [Aziz and Settari, 19831 by Saad and Zhang [1998]. 
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no fluid flow 
on boundaries PO,,, -1.0 MPU 

Figure 1 - 2-D horizontal oil production water injection model 

It is worthwhile to briefly point out some of the immediate contrasts and similarities between 
these respective approaches. In Saad and Zhang’s work the pressure equation was discretized 
using a finite volume method; and the resulting linear system of algebraic equations in the pressure 
variable (for the latest calculated saturation variable) was solved by a bi-gradient-like method. For 
the saturation equation, they use a modified and robust upwind scheme (following the MUSCL 
approach, an acronym for Monotonically Upstream-centered Scheme for Conservation Laws) that 
seeks to reduce the diffusive effect that is intrinsic in rudimentary upwinding procedures [Van Leer, 
1977; Randall, 19901. 

By way of contrast, the FlaPLIE toolkit used in the F-I approach solves the pressure (P) and 
saturation (S) equations simultaneously, rather than sequentially. The dynamic adaptive-grid 
solution algorithms incorporate finite element Galerkin methods of order 2 or 3 on the spatial 
domain. The temporal discretization is a fully implicit BCE (Backward Cauchy-Euler) method. As 
a result of solving in P and S simultaneously, the discretized equations generated with the Galerkin 
technique obviously form a nonlinear system of algebraic equations. In order to solve the nonlinear 
algebraic system, it is first linearized using a variant of the Newton-Raphson method. With today’s 
robust solvers for linearized algebraic systems, many challenging nonlinear PDE systems can be 
solved accurately. But there is a price to be paid, software-wise. Each different type of PDE 
(elliptic, hyperbolic, linear, nonlinear, mixed types, etc.) can present a host of demands, of widely- 
varying severity, upon solvers of the resulting algebraic systems. So numerous matrix solution 
options am made available to users of general-purpose PDE toolkits. From the several solution 
options available in the FlexPDE toolkit, we found that a variant of Lanczos’ method was sufficient 
for solving simultaneous equations for S and P in the present example [Lanczos, 19971. An 
interesting finding was that, although the time discretization in FlexPDE is only first-order accurate, 
it nonetheless seems to provide very satisfactory answers in the reservoir problems addressed so 
far. This result was satisfying in view of the numerical difficulties that might have been anticipated 
in solving the time-evolving saturation equation simultaneously with the instantly-equilibrated 
pressure equation. We note further that it was important to stabilize the saturation equation in the 
present approach by adding a regularizing term, EAS, to equation (E-21). (The notation, AS, 
represents the Laplacian of the water saturation). Values of E are made sufficiently small to retain 
the basic integrity of the original saturation PDE. Finally, the numerical approaches in both Saad’s 
work and the F-I techniques refine and merge grid cells according to criteria based on various 
internal estimates of local truncation error, as well as global measures. 
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The following numerical values, in IT&S units, are assigned to reservoir parameters in this 
example problem: 

K = 5~10~‘~ m2, (absolute permeability) 

<p = .33, (porosity) 

p, = 1x10” Pa.s, (water viscosity) 

po= 4x10” Pas . . (oil viscosity) 

The domain Q is taken formally to be the rectangular region (Figure l), 

L2 = { (x,y) : 0 I x I lOOm, 0 I y 5 50m). 

A water-injection well with an effective radius of 0.5 meter is located near the north-west corner 
of the domain and is centered at (6.25,43.75m). An extraction well of the same radius is placed, in 
similar fashion, near the opposite (south-east) corner. Although the size of the wellbore may seem 
to be large, it has no major negative repercussions when modeling at field scales, especially away 
from the well location. (It is often possible to adjust the pressure BCs fairly accurately in going 
from one well size to a concentric and relatively larger size.) Simulations that use the actual well 
size will tend to over-grid unnecessarily in the vicinity of the well, unless, of course, one wishes to 
simulate flow behavior within the immediate wellbore neighborhood, possibly including flow within 
the wellbore itself. The approach followed for field-scale simulations in the present work simply 
excludes the region interior to each well from the definition of Q. In this way, the boundary of L2 
consists of exactly three closed curves: the rectangle perimeter, TI, and the injecting and extracting 
well circumferences, l?, and l?,, respectively. The boundary F, is assumed to be impermeable. That 
is, the outward normal component of the flow velocity, V l n, vanishes over T,, which translates to 
the pressure BC, aP/&r=O, where n is the outward normal vector to F,. Pressure values of 1.5 and 
1 MPa are assigned on TZ and r,, respectively. Also notice that, because the problem of 
determining the pressure is only a BVP, these boundary assignments are sufficient to solve for P at 
any instant in time. 

In solving the saturation equation (E-21), the initial saturation, as well as the saturation 
specification along some appropriate Cauchy curve for all t > 0, must be known. It can be shown 
that, in this case, the curve l?, in Figure 1 is an admissible Cauchy curve because: (i) the saturation 
is always maintained at the prescribed value of 1 .O for all t > 0, and (ii) less trivially, all characteristic 
curves emanating from F2 span the entire domain, Q. On Fl , the boundary integrals for the 
saturation equation can still be set to zero, because its integrand is a multiple of Van, where V is the 
velocity and n is an outward normal. At the extraction well, however, the boundary condition is 
actually a part of the solution process, which means that no boundary specification is required there. 
The FlexPDE toolkit has a provision that enables users to implement the ‘no-specification’ 
boundary condition according to the finite element ‘recycle’ techniques that were discussed, for 
instance, by Oden et al 119861. This option requires the integrands of certain boundary integrals to 
be provided by the user in the FZexPDE problem setup commands (Appendix D). 

The initial and boundary conditions for this example are summarized as follows: 

Initial conditions, t = 0: 

S = 0 on Q, 
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P = PO, where PO is the solution of equation (E-22), with S=O and the pressure BCs listed 
next. 

Boundarv conditions: 

On rl: V*n = fV*n = 0 for t 2 0. 

On lYZ: P = 1.5 1 O6 Pa for t 2 0, and S = 1 for t > 0. 

On F3: P = lo6 Pa for t 2 0, and a ‘no-specification’ BC for S. 

Results for this test example are shown in Figures (2) - (7). Figure 2 shows the isocontours of 
water saturation as a function of x and y at t=lOO days. The adaptive-grid algorithm in FZexPDE is 
clearly tracking the water saturation front. The abbreviated text immediately beneath the figure lists 
the FZexPDE input tile name (descriptor tile), the current time-step cycle, total elapsed time in 
seconds, time-step size in seconds, number of spatial grid nodes utilized in this stage, the 
corresponding number of cells, the Rh4S error over the entire domain, and the total volume of 
displaced oil up to this time. Because no injected water has yet reached the extraction well, we 
confirmed that the volume of displaced oil is equal to the volume of injected water. Figure 3 shows 
the self-adapting grid that is used at the specific cycle (113) of the FZexPDE solution process. The 
density of grid nodes is high all along the current location of the moving water saturation front and 
also near the injection well, where the saturation gradient is steepest. The water and oil saturation 
gradients are null at the extraction well at this time (100 days); so the cluster of cells in the vicinity 
of the extraction well is only there for resolving the local pressure gradients of oil extraction and for 
logical considerations related to the geometry of that region. Figure 4 shows a snapshot of the 
saturation distribution after 200 days; and Figure 5 displays the first-time arrival of the water 
saturation front at the extraction well after 340 days. Figure 6 exhibits in greater detail the so-called 
water break-through in a square with sides equal to eight well-diameters, about the extraction well. 
Finally, Figure 7 displays the oil production and the production-rate history curves. The latter curve 
clearly indicates the instant at which the water break-through occurred. The evolution of disparate 
saturation and pressure gradients, including the fluid fronts and flows near extraction wells 
(associated with robust outflow boundary conditions) are sharply resolved relative to other 
numerical solution techniques that are used widely in forward reservoir models. These are 
obviously significant factors for accurately determining the times, paths, and rates of fluids arriving 
at prodution wells. They take on additional significance in F-I parameter estimation methods, 
because inverse PDE solutions are reliant upon the coupled forward model solutions. The accuracy 
of forward model solutions and derivative pressure gradients is all the more important because 
forward solutions carry the information from which permeability distributions are determined with 
the inverse PDEs, as in the second example problem for an oil-dome scenario. 
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18:52:146124/98 
FlexPDE 2.04 

x 
SAADZW,: Cycle=, 13 Tune= 8,64e+6 dt= 2,4442e+5 p2 2444 Nodes ,183 Cells RMSErr= 0.0019 
Integral= 589.1901 

Figure 2 - Isocontours of water saturation after 100 days 

SAADZWI: Cycle=, 13 Time: 9 64e+6 dt= 2,4442e+5 p2 2444 Nodes 1183 Cells RMS En= 0.0019 

Figure 3 - Corresponding unstructured adaptive grid distribution after 100 days. 
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OW Water-Drive Homogeneous Sandstone l&52:14 6/24/98 
FlexPOE 2.04 

X 
SAAD2Wl: Cycle=147 lime= 1.72&+7 dt= 2.939e+5 p2 2710 Nodes 1315Cells RMS Err=0.0016 
Integral= 1235.334 

Figure 4 - Isocontours of water saturation after 200 days 

,8:5214 6,24,98 
FlexPDE 2.04 

SAAMWI. Cycle=206 Time: 2 937&+7 dt=2 3333e+5 p2 1909 Nodes 920Cells RMSErr= 0.0019 
Integral: 2206 5.52 

Figure 5 - Water saturation at break-through after 340 days 
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Figure & A blow-up of the water saturation front arrival at extraction well (see Figure 4) 

t E7 
PCURVES- Gnd#d p2 33993 Nodes 16692 Ce,,s RMSErr- 16720 
Integral(a)= 3.909453e+7 Integral(b)= 3 ea479e+7 

Figure 7 - Production curve (red) and normalized Production Rate curve (green) 
calculated at the extraction well from t = 0 to 1000 days 



UCRL-ID-126377 Fdmrm~ 1999 

Example Problem 2: A vertical (2-D) oil-dome problem 

This example (Figure 8) considers a vertical 2-D cross-section of an oil-dome that loosely 
incorporates Pampano-like field features. An extraction well with an assumed down-hole pressure 
value (maintained by pumping) is placed near the dome crown. Hydrostatic pressure of a 
supporting aquifer is assigned at both of the vertical sides near the rectangle base. This is the only 
place where water can flow into the dome. All pressure assignments are assumed to be time- 
invariant; and all of the remaining boundaries are assumed to be impermeable. 

Underlying aquifer 

Ftgure X- 2-D verttcal oil production water-drive model 

A major objective in this example (addressed in Case 3 below) was to determine the capacity of 
the F-l modeling method to calculate a known heterogeneous permeability distribution in a 
reservoir, given sufficiently dense ‘measurements’ of pressure and permeability. The wor&in~ 
principle is: Ifan inverve method is unable to produce a high-fidelity irnuge when given sujkient 
dutu. there i.y little reason to expec’t the method to yield credible results ,fi)r real .xituation.v with 
sparse data. The purpose of Cases 1 and 2 below was to verify that the FlexPDE solution 
algorithms are capable of resolving sharp saturation fronts and large disparate pressure gradients in 
forward solutions, as well as sharp interfaces between low- and high-permeability formation sub- 
structures. These cases are impottant because failures to resolve physical gradients adequately in 
simulations frequently yields erroneous estimates of tluid front propagation in heterogeneous 
formations, which may in turn yield erroneous estimates of where, and how much oil may be 
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remaining over time in well-field design simulations and operational decision-making. (See Figures 
9-16.) 

The governing PDEs for this example are obtained by including gravitational terms in equations 
(E-21) and (E-22), which were given previously (Appendix E). Heterogeneity in this simplified 
dome model is modeled with two saturation-independent permeabilities: Kc represents the 
permeability of channel sands, and K, represents interchannel permeability. Rock and fluid 
properties, including the quadratic relative permeability, are taken to be the same here as in the 
previous water-flood example, with K, = K. Depending on values of the ratio, R = K,/K,, the 
relative roles of individual physical processes, e.g., entrapment, refraction and retardation, are 
problem-specific and can significantly affect the transient evolution of recovered and remaining oil 
over time, as will be evident in the results displayed in Figures (9) - (14) for a case with R = l/10 
and in Figures (15) and (16) with R = 0. The results obtained in these two cases clearly indicate the 
capabilities of our approach in tracking the complex evolution of saturation fronts, as they split, 
refract, and undergo retardation while propagating through the reservoir. 

Forward Model Verifications with Densely Sampled Data Sets 

Case 1: Forward solution for pressure and snturation with R = l/l 0 

In this first case, with R = l/10, it can be seen in Figures 8 and 9 that water from the supporting 
aquifer enters the lower vertical sides of the dome and drives oil through portions of the two low- 
permeability interchannel sub-structures, as well as through the more permeable channels. Figure 
10 indicates how the unstructured numerical solution grid adapts dynamically to anticipate, and 
follow, the moving saturation fronts simultaneously with pressure gradients near the extraction well. 
The numerical grid undergoes both refinement near large gradients and un-refinement in parts of 
the domain that do not contain large gradients. Figures 11 and 12 show the arrival of first water 
saturation front at the extraction well at 200 days. The saturation front on the right-hand-side of the 
dome has not yet arrived at the well. Nor has the saturation front yet made its way through the 
relatively narrow channel between the two low-permeability sub-structures in the central-dome 
region. The water fronts have however continued to penetrate the outer regions of the low-K 
substructures. Figures 13 and 14 show the arrival of the second saturation front at the extraction 
well at 220 days. The lagging saturation front has started to enter the narrow channel between the 
two low-K sub-structures. At 420 days we observed that significant oil (approximately 20%) was 
retarded in the low-K interchannel sediments. After 4 years, essentially all of the oil in the dome 
has been produced in this case. 
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Figure IO Dynamically generated grid after IO0 days 
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Figure I I - First time anival of water break-through after 200 days 

DW !&ater-Dive Heterogeneous sand/silt 17 30.43 6/19/96 
FlexPDE 2 04 

DMHSSI Cycle=1 71 Time= I 728et7 dt= 2 2799e+5 p2 5936 Nodes 2902 Cells RMSErr= 0 0019 
Integral= 12 27777 

Figure I2 l3lowup of first time arrival of water break-.through at extraction well 
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O W  Water-Drive Heterogeneous sand/silt 17.30 43 6/l 9198 
FlexPDE 2.04 
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DMHSSI: Cycle=187 Time= 1 900&?+7 dt= 2 9579e+5 p2 5954 Nodes 2912 Cells RMSErr= 0001 
Integral= 2324 401 

Figure 13 - Second water break-through at 220 days 

O W  Water-Drive Heterogeneous sand/silt 17.30 43 6/i 9198 
FlexPDE 2.04 

0 0; 
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DMHSSI Cycle=187 Time= 1 9008e+7 dt= 2,9579e+5 p2 5954 Nodes 2912 Cells RMS Err= 0 00’ 
Integral= 23 30921 

Figure 14- Blow-up of second water break-through at extraction well 
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Case 2: Forward solution for pressure and saturation with K = 0 

The permeability in natural systems may vary by many orders of magnitude. In such instances 
the contrast ratio, R, may approach zero in parts of the formation. The problem considered in this 
second case is identical to Case 1 above, except that R is here taken to be zero. The results shown 
in Figure 15 indicate that, at 100 days, the water saturation front has not penetrated the low-K sub- 
structures, which is in distinct contrast to the corresponding results in Case 1. Therefore retardation 
effects, in which water resides for some significant amount of time in the interchannel sediments 
before exiting through the downstream interface(s), are practically negligible in the present case. It 
is apparent in Figure 15 that saturation fronts simply go around the interchannel sub-structures; 
and the flow evolution pattern is somewhat different than when significant retardation occurs. Such 
behavior potentially affects oil production histories and thus remaining oil. Figure 16 shows that, 
after 420 days of pumping, oil is possibly trapped in several areas: (i) beneath the concave- 
downward regions of the low-K regions, (ii) in the narrow channel between the low-K regions, and 
(iii) in the vertical column area above the narrow channel. There is practically no retardation of oil 
in the low-K sediments at any time. After 2.3 years, approximately 70% of the oil has been 
produced; and it appears that most of the remaining 30% is trapped, more or less indefinitely, 
beneath the low-K substructure (with the larger concavity) on the left-hand-side of the dome. 

The results in these cases (as well as others that are not included in this report) suggest that 
correct handling of sharp saturation fronts and formation interfaces is important for simulating 
histories of oil recovery, retardation, and trapping, They further suggest that the shape, scale, and 
permeability contrast of formation heterogeneities may be significant determinants of critical 
transient flow processes in estimations of remaining oil. 

OW Water-Dive Homogeneous Impermeable 19 20.05 6/25/98 
FlexPDE 2 04 

X 
DMHl2 Cycle=109 Time= 864e+6 dt=2 071e+5 p2 3710 Nodes 1726 Cells RMSErr= 0 0029 
Integral= 823 0667 

Figure 15 Isocontours of water saturation after 100 days for R = 0 
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O W  Waler-Drive Homogeneous Impermeable 19.20:05 6/25/98 
FlexPOE 2 04 

X 

DMHl2 Cycle=183 T,me= 3,6288e+7 dt= 1.1208ec6 p2 4073 Nodes 1897 Cells RMSErr= 0 0065 
Integral= 2557 32 

Figure 16 - Isocontours of water saturation after 420 days for R = 0 

Inverse Model Verifications with Densely Sampled Data Sets 

Case 3: inverse solution for permeability (Kj,from dense pressure data 

The purpose of this example was to test the capacity of the inverse solution method, alone, for 
calculating a known heterogeneous permeability distribution from ‘sufficiently dense’ 
measurements of pressure at wellbores. As indicated previously, an inverse method that is 
expected to yield credible results for real situations with sparse data must first be able to produce 
high-fidelity images when given sufliciently dense data. The actual number of datum points that 
would constitute sufficiently dense sampling is generally nebulous, owing to both the problem 
specific and nonlinear nature of reservoir parameter estimation problems. So benchmarking against 
ground-truth examples is imperative for gauging the potential effectiveness of any inverse 
technique. From signal-processing principles, pressure data are considered to be ‘sufficiently 
dense’ when simple interpolations (with F-I finite element nodes and basis functions) bchveen 
datum points resolve the range of spatial frequencies that constitute good permeability images. 
High-quality images of permeability were obtained in the present case when many thousands to 
hundreds of thousands of pressure datum points were available. The results presented in Figures 
17-19 were obtained with approximately 200,000 discretely sampled pressure datum points (Figure 
20). The ‘measured’ pressure values were actually abstracted from ground-truth vaIues at discrete 
wellhore locations; and spatial filtering PDEs were not included in this case. 

Several observations can he made from results obtained in this case in Figures 17.19. Fist, 
considerable resolving power is attainable with the F-I techniques and the FlexPDE solution 
algorithms. The image quality obtained in Figure 19 is representative of many runs that were 
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solved for this case, with some problem-specific differences that will be indicated later. Hence this 
case provides a useful benchmark for examining effects of data sparsity, which is always a central 
issue in practical reservoir applications. Finally, the image in Figure 19 demonstrates the 
fundamental fact that images from a finite number of datum points cannot be truly perfect (unique) 
-- no matter how densely they’re spaced - - because some information is always lacking between 
the datum points. Although not a dramatic effect, as in sparsely sampled problems that appear later, 
spatial filtering was nominally beneficial in imaging densely sampled data. Problem-specific 
factors that affect images in these F-I solutions include: data density/sparsity, permeability contrast 
ratios at rock interfaces, information propagation modes, and robustness of the numerical 
algorithms. 

Although spatial filtering PDEs were not incorporated in this case, the inverse solution process 
was nonetheless challenging for reasons that follow in a somewhat detailed discussion. We first 
note that, because fluid pressure equilibrates almost instantaneously, it satisfies the steady-state flow 
equations (E-22) and (E-19) at any given time(s). Consequently, the basic inverse technique 
(Appendix B and Gelinas et al [ 19981) applied here solves the steady-state inverse equation (E-22) 
for the sum of all mobilities, K*M (Appendix E). Data that has been measured at some time shortly 
after pumping starts, t = O+, and before fluids have changed from their initial conditions, are used to 
solve for K*M (and K) in this test case. The discretely measured pressures at t = 0, are, in fact, the 
ground-truth values sampled at 200,000 datum points (Case 1). At t = O+, fluid saturations are equal 
to their initial values, S, = 1.0 and S = S, = 0 everywhere in the dome; and the total mobility, M, is 
thus given by equation (E-18). The remaining information that is needed to solve the inverse 
equation are values of K on appropriate Cauchy lines (Appendix B). The vertical boundaries near 
the dome floor, where water enters/leaves the oil-dome, are taken to be Cauchy lines because all 
characteristics (streamlines) in the domain emanate from these boundaries and terminate at the 
extraction well. The ‘measured’ values of K on the Cauchy lines are K = Kc = 5x10-‘” m2. (We 
note here that Cauchy lines can be selected in many different ways. This is an area that is under 
continuing study and promises to produce even better images from fewer datum points in future 
works.) 

The above process of solving the inverse equation for K is a fair test of the techniques under 
development here, because the algorithms have no way of knowing that the 200,000 ‘measured’ 
datum points are identically equal to the ground-truth values at discrete wellbore locations from 
Case 1. Figures 17 - 19 show an evolving development of the K-distribution as its ultimate 
solution develops progressively from an arbitrary starting value (for K) by an iterative process. In 
these solutions, equation (E-22) was regularized and solved for K in three stages. Progressively 
smaller values were assigned to the regularization coefficient, which maintains the integrity of the 
original hyperbolic PDE, in each stage. (Recall previous discussion that defined regularization of 
the hyperbolic saturation equation for the horizontal water-drive problem.) The regularized inverse 
equation in the present case is, however, much more difficult to solve than the PDEs considered in 
the previous water-drive problem (example problem 1). The linearized algebraic system in this case 
is so close to being singular (very large condition number) that it requires a much more robust 
solution technique than was used in previous examples. We therefore found it necessary to use (in 
FkxPDE ) a Vandenberg conjugate gradient algorithm with incomplete Cholesky pre-conditioning 
in order to solve for K in this case [Vandenberg, 1988; Jea and Young, 19831. 

It is apparent in the captions of Figures 17 - 19 that the number of adaptive-grid nodes tends to 
increase synchronously with the quality of the K-images, until the demanded accuracy is achieved 
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in each stage of the solutions. From a signal-processing point of view, increasing the number of 
spatial grid nodes is tantamount to incorporating higher and higher spatial frequency components, 
which enhance the spatial resolution of the K-images in each stage of development. Viewed as an 
input-output system, the output solutions from FZexPDE are K-images composed of spatial 
frequency components that were ‘signalled’ by the input pressure (Figure 20) and the initial 
Cauchy data acting through the inverse flow equation. The flow equation acts essentially as a 
nonlinear transfer function. The quality of the image depends upon the capacity of available grid 
nodes to resolve the spatial frequency components of the K-image consistently with the sampling 
density. Clearly, a failure to solve the inverse flow equation with high-accuracy would add 
distortion to the output image of K, which could not be distinguished from noise (or errors) in the 
input pressure data. FZexPDE, like many other robust PDE solvers, achieves high levels of accuracy 
by using both local and global error diagnostics to dynamically control the location, nature, and 
extent of adaptive grid refinements and un-refinements. The utility of unstructured adaptive-grid 
PDE solvers in this work stems largely from their capacity to place grid nodes where they are most 
needed, without fixed topological structure constraints, and when they are most needed for resolving 
physical features that are commensurate with the information contained in the discretely sampled 
pressure and permeability data. 

Returning to the results in Figure 19, the permeability contrast ratio was equal to R = l/10; and 
the K-isocontours conform generally to the shape of heterogeneity substructures in the oil-dome. 
But, even with extremely dense datum points the image of the low- and high-permeability interfaces 
in Figure 19 is not completely sharp. In addition to the absence of information between datum 
points, image resolution can be affected by such factors as numerical error (from PDE 
discretization schemes, matrix condition, and regulatization), data noise, derived pressure gradient 
error, and possibly effects associated with mathematical instability. Notice that errors from noisy 
Laplacians of pressure in many other inverse techniques do not occur here, because finite element 
methods avert Laplacian evaluations via an integration-by-parts of divergence terms in flow 
equations. While results to-date are certainly promising, we have gained deepened insights during 
Phase I that will potentially yield still greater levels of image resolution from less data in future 
efforts. 
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Figure 17. Recovery of K from densely sampled pressure data; 834 nodes; Stage 1. 
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Figure I 8 Recovery of K from densely sampled pressure data; 1.7 17 nodes; Stage 2. 
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Figure 19. Recovery of K  from densely sampled pressure data; 247 I nodes; stage 3. 

26 



Scale = 

DOOUSI 1. Grid#9 p2 1153 Nodes 539 Cells RMS Err= 
Stage 1 Integral= 

Figure 20. Isocontours of densely sampled pressure data (t=O+ snapshot) 

Inverse Model Verifications with Sparsely Sampled Data Sets 

The purpose of the remaining cases in this report was to test the capacity of the F-1 techniques 
for producing credible images of heterogeneous reservoir formations from sparsely located 
pressure ‘measurements’. As was true in previous cases, the number of datum points that will be 
needed to produce credible images from sparse data is nebulous. Also, the potential role and 
effectiveness of spatial filtering has not previously been established in this type of inverse method, 
to the best of our knowledge, We therefore benchmark representative cases against ground-truth 
examples to measure the potential effectiveness of this inverse technique, having previously noted 
the method-specilic, problem-specific, and nonlinear nature of reservoir parameter estimation. 
When dealing with sparse pressure data, the inverse solution technique described in Case 3 is 
augmented with additional PDEs that spatially filter the derived pressure gradients. Spatial filtering 
is necessary because interpolations that respect both the flow equation and the discrete data are 
noisy. Recall that pressure data were interpolated between wellbores by finite element solutions of 
the flow equation, which were “clamped” to measured values ai discrete wellbores. Unless 
conditioned by spatial filtering, the interpolations would not know that they must be “band- 
limited” functions prescribed by undersampling theory [Bracewell, 19861. Expressed in terms of 
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Fourier transforms, undersampling of signals by discrete measurements produces images with the 
high-frequency tail truncated beyond some spectral cutoff. Values of the cutoff frequency are 
-related to the spatial intervals between measurements. The truncated high-frequency information is 
known to masquerade at lower frequencies in the cutoff spectrum; and this effect is referred to as 
“aliasing”. If the high-frequency tail is not too important, sparse sampling ‘procedures produce 
fair images. If allowed to persist, high-frequency interpolation noise is magnified in derived 
pressure gradients that are then used to solve the inverse flow PDE (equation (E-19)) for 
permeability. The basic technique for solving spatial-filtering PDEs simultaneously with an inverse 
flow PDE is described in Appendix B for ground water flows. See equations (B-17a) - (B-17d). 
These techniques, with suitable modifications for dealing with transient snapshots of pressure and 
other data, have been extended successfully to reservoir problems in Phase I. 

Case 4: Sparsely Sampled Cases - Spatial Filtering Applied 
Case 4 is actually made up of four individual problems in which a permeability image is 

calculated from four sparsely sampled data sets composed of 1, 20, 75 and 300 pressure datum 
points, respectively. Each data set was abstracted at discrete measurement locations at time = O+, as 
in Case 3. The full F-I method was applied to each of the data sets. The resulting permeability 
images are presented in Figures 21-24, proceeding from the least-sparse (300 datum points) to the 
most-sparse (1 datum point) data sets. 

The F-I solutions were stable; and the images were plausible relative to ground-truth in all cases 
when due account is taken of,data spar&y. Figures 21 and 22 indicate that very credible images of 
formation heterogeneity were obtained commensurate with the 300 and 75 datum points that were 
given. The image obtained from 20 datum points in Figure23 gives a plausible realization of low 
permeability horizontally across the mid-region of the domain. The image in Figure 24 was 
calculated from a single pressure datum point ‘measured’ in the middle of the domain. This case 
confirms that the F-I method was stable in the most extreme conceivable circumstance, with bale 
pressure measurement. There was, of course, other information supplied to the problem via the 
‘known’ permeability and hydrostatic pressure values on Cauchy lines at reservoir-aquifer 
interfaces, by ‘measured’ pressure conditions at the production well, and by the no-flow boundary 
conditions on the remaining boundaries of the oil-dome. The results in these cases are generally 
representative of many other runs that were executed with widely varying numbers of ‘measured’ 
datum points. In many cases with relatively sparse data (5 - 20 datum points) image resolution 
sometimes exceeded our initial expectations from simple data-sampling/signal-processing 
principles. Image resolution improved progressively as the number of datum points increased, as 
expected. Finally, experience and insights gained in this initial phase of work suggested several 
ways to possibly improve the quality of these images with fewer datum points in future work. 
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Figure 21. Calculated permeability image from approximately 300 pressure datum points. with 
spatial filtering applied. 
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Figure 22. Calculated permeability image from approximately 75 pressure datum points, with 
spatial filtering applied. 
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Figure 23. Calculated permeabihty Image from approximately 20 pressure datum points, with 
spatial filtering applied. 
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Figure 24. Calculated permeability image from one pressure datum point, with spatial filtering 
applied. 

Case 5: Sparsely Sampled Cases -No Spatial Filtering Applied 
The same data sets that were tested with the full F-I methodology above (Figures 21-24) were 

solved here with spatial filtering eliminared. The objective was to examine the potential benefits that 
spatial filtering can provide. The results were immediate and compell ing. Permeability solutions 
were unstable and fraught with artifacts when pressure data was too sparse. Specifically, the 
unfiltered solutions in the oil-dome example were unstable when fewer than approximately 100 
‘measured’ pressure datum points were used. Figure 25 presents the image that was obtained 
without spatial filtering in the case with 75 pressure datum points. W e  also observed that images 
obtained with no spatial filtering and 300 pressure datum points did not approach the quality of the 
images shown in Figure 22 with spatial tiltering applied for 75 datum points. 
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Figure 25. Permeability image calculated from approxmtately 75 pressure datum pomts. With no 
spatial filtering applied, this inverse solution was unstable. 

IV-Z Synopsis of Examples and Results 

Owing to the breadth of test cases, results, and diverse motivations in this section, we 
present a concluding synopsis for interested readers. 

Example Problem I: 

The first example was an idealized water-drive scenario on a 2-D horizontal domain (Figure 1). 
The absolute permeability was assumed to be spatially constant, and gravitational forces were 
neglected. Specific objectives in this example problem were to benchmark: (i) conceptual model 
formulations, (ii) FfexPDE solution algorithms, and (iii) forward solutions for fluid pressure and 
saturations. The results obtained with NexPDE were found to compare favorably with results 
presented by Saad and Zhang [1998], who used an alternative adaptive-grid solution technique. 
Our results (Figures 2-7) indicated that the evolution of sharp fluid fronts and flows near extraction 
wells (with robust outflow boundary conditions) are resolved very well relative to most other 
numerical solution techniques. These are significant factors for determining the times, paths, and 
rates of fluids arriving at production wells, as well as the distribution of oil remaining in the 
formation over time. 
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Example Problem 2: 

The second example was an idealized vertical 2-D cross-section of an oil-dome. It loosely 
incorporates Pampano-like field data as depicted in Figure 8. Rock hetereogeneity was modeled 
with two absolute permeabilities; Kc represented channel sands, and K, represented interchannel 
permeability. The contrast ratio at heterogeneous formation interfaces is given by R = K,/K,. An 
extraction well with an assumed down-hole pressure value (maintained by pumping) was located 
near the dome crown. The governing PDEs included gravitational effects (Appendix D). Pressure 
assignments at bounding aquifer interfaces were assumed to be time-invariant; and dome 
boundaries were assumed to be impermeable, except at the supporting aquifer interfaces. 

A primary objective in this example was to benchmark inverse solutions for permeability. Test 
cases were solved for absolute permeability distributions from discretely ‘measured’ pressure 
datum points. The ‘measured’ datum points were, in fact, abstracted from ground-truth forward 
model solutions at designated wellbore co-ordinates. The density of datum points used to estimate 
permeability spanned a broad spectrum, ranging from extremely dense sampling (>200,000 datum 
points) to extremely sparse sampling (one datum point). Key issues in these cases were: “What is 
the best image quality that might be expected from F-I permeability interpolations between wellbore 
measurements for data sampling densities that range from very sparse to very dense?“; “How to 
extract the greatest amount of information from sparse data sets for reservoir systems, noting that 
such systems do not generally satisfy linearity and other assumptions that are needed for 
conventional Fourier-analysis-based signal-processing techniques?“; “How to implement spatial 
filtering techniques in physical configuration space, as an alternative to Fourier-transform 
techniques?“; and “How to suppress noise in both forward and inverse model simulations?” 
These issues are critical to successful advances toward project end-objectives. The results obtained 
to-date are encouraging. 

Forward Model Verifications (Cases 1 and 2): 

To address the issues above (and others), we first verified that highly accurate forward solutions 
were attainable for pressure and saturation in the oil-dome example. A first test case assumed that 
heterogeneous formation interfaces had contrast ratio, R = l/10; and the second case assumed that 
R = 0. Results in Cases 1 and 2 (Figures 9-16) confirmed that FZexPDE algorithms resolve the 
propagation of disparate fluid pressure and saturation fronts extremely well for even the sharpest 
interfaces (R = 0) in heterogeneous formations, FZexPDE solutions clearly tracked the complex 
evolution of saturation fronts, which could split, refract, and undergo retardation as they propagated 
through the reservoir. Depending on values of R, the relative roles of individual physical processes, 
e.g., entrapment, refraction, and retardation were problem-specific and could affect the transient 
evolution of recovered and remaining oil over time. 

Inverse Model Verifications (Cases 3-5): 

The remaining cases in this section solved inverse problems for permeability distributions from 
data sets with varying degrees of sparsity. Because the resolution of permeability images is 
generally an unknown function of data density, we tested the importance of spatial filtering in F-I 
solutions versus sampling density. Densely sampled data sets were benchmarked in Case 3, and 
sparsely sampled data sets were considered in Cases 4 and 5. 
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Densely Sampled Data (Case 3). 

Case 3 tested the capacity of the inverse solution method, alone, to calculate a known 
heterogeneous permeability distribution from densely sampled data. The working principle is: If a12 
inverse method is unable to produce a high-fidelity image when given sujkient data, there is little 
reason to expect the method to yield credible results for real situations with sparse data. Results 
in Case 3 (Figures 17-19) yielded high-quality images of permeability relative to ground-truth when 
sufficiently dense data was given (thousands to hundreds of thousands of datum points, depending 
on problem specifics). These results demonstrated that considerable resolving power is attainable 
with the F-I techniques and the FZexPDE solution algorithms. They further provided a useful basis 
for benchmarking the effects of data sparsity, which is always a central issue in practical reservoir 
applications. Finally, they supported the fundamental fact that images from a finite number of 
datum points cannot be truly perfect (unique) - - no matter how densely they’re spaced - - owing to 
the absence of information between datum points. Spatial filtering was generally beneficial to 
image quality in densely sampled cases, but not to the dramatic extent that is observed with sparse 
data sets. Problem-specific factors that affected the impact of spatial filtering in F-I solutions 
include: data density/spar&y, permeability contrast ratios at interfaces, information propagation 
modes, and robustness of the numerical algorithms. 

Sparsely Sampled Data - With Spatial Filtering (Case 4). 

Case 4 solved for permeability from sparsely sampled data sets, which contained 1, 20, 75, and 
300 pressure datum points, respectively. The full F-I method was applied, in which spatial filtering 
PDEs were solved simultaneously with the forward and inverse flow equations. The solutions were 
stable and the images were plausible relative to ground-truth, commensurate with the amount of 
available data, in all cases. The results obtained in these cases were generally representative of 
numerous additional runs that were executed with varying numbers of ‘measured’ datum points. In 
many cases with relatively sparse data (5 - 20 datum points) image resolution sometimes exceeded 
our initial expectations from elementary data-sampling/signal-processing principles. Image 
resolution improved progressively as the number of datum points increased, as expected. 

Sparsely Sampled Data -No Spatial Filtering (Case 5): 

Case 5 tested the potential benefit of spatial filtering by deleting it altogether. The results were 
immediate and compelling. Permeability solutions were unstable and fraught with artifacts when 
pressure data was too sparse -- as is true in many inverse techniques. Specifically, unfiltered 
solutions in the oil-dome example were unstable when fewer than 75 ‘measured’ pressure datum 
points were used. This was a dramatic departure from the stable images that were consistently 
obtained with spatial filtering applied. 

Concluding Remarks: 

It is apparent in these Phase I results that the combined signal-processing and physics-based F- 
I techniques, solved with rigorous mathematical and numerical methods, enhance the resolution of 
images of permeability away from wellbores. In some instances, where many other existing 
techniques would be unstable, the F-I method was stable and produced surprisingly good images 
from sparse data. Insights gained in Phase I suggest that additional advances may materialize as 
these incipient principles and solution techniques are developed more fully over time. For example, 
results and descriptions in Section IV indicate that the evolution of sharp fluid fronts, which may 
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split, refract, and undergo retardation as they propagate through the reservoir, are resolved 
accurately in forward BOM solutions with these modeling techniques. Data sets observed at 
specified times (or snapshots) during transient wellfield operations may serve as additional 
constraints for enhancing permeability images. The results further suggest that oil recovery is a 
function of low- and high-permeability contrasts, of physical scale and shape of rock heterogeneity, 
and of disparate-scale flow and saturation gradient evolution. A capacity to better resolve these 
sensitive features with multiple data snapshots and enhanced images of reservoir processes away 
from wellbores potentially opens promising new paths toward attainment of far-market objectives. 

V. Recommendations 

From a critical evaluation of Phase I results we believe that continuation of this project to a 
Phase II effort is warranted and would recommend it to those who understand the risk-versus- 
potential return factors in far-market endeavors. A primary objective in Phase II would be to further 
expand the concepts and methods proven in Phase I to more realistic 2-D porous media physics. 
This would include: (i) representative capillary pressure curves and other relevant reservoir data, (ii) 
investigating the effects of undersampling in reservoir contexts, and (iii) incorporating time- 
dependent production data with other transient data. We believe that it is important at this stage of 
development to rule out possible show-stoppers in three essential areas before expending the much 
greater levels of effort that would be required with 3-D codes and additional technical scope in a 
final Phase III: First, the extension of capillary physics extends the range and possible severity of 
nonlinear coupling and uncertainty effects that need to be assessed. Second, the nature and 
significance of image distortion between boreholes must be assessed for a sizeable range of small 
and large data sets. These results would provide an early view of the value of individual pressure 
measurements and the significance of their number and locations relative to production and/or 
injection wells. Third, the inversion techniques applied for steady-state ground water problems 
(Appendix B) will extend, theoretically, to inversions of data gathered at multiple times during well- 
field operations. This is a key concept for economically enhancing image resolution from sparse 
data, which needs to be confirmed in 2-D, with oil-water physics. Each of these are formidable 
tasks that we believe can, and must, be resolved in Phase II, on the path toward the final far-market 
goals. 
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Appendix A: Theory 

Although physical systems may sometimes behave deterministically, they are 
nonetheless stochastic in their basic nature because fundamental uncertainties exist at all 
scales of measurement. Consequently, both dynamics and statistics must be considered in 
any modeling effort that seeks to gain a fuller understanding of the information contained in 
measured data and then use it to produce more reliable predictions of subsurface properties 
and flow behavior. The theoretical basis of stochastic modeling approaches is found in 
kinetic theory, where the dynamical and statistical axioms of physics are used to generate 
continuum flow models of mass, momentum, and energy balance. Two theoretically 
equivalent approaches are found. One derives from the work of Langevin [ 19081 and is the 
basis of many of the random field models that are used extensively in subsurface flow 
problems today. Random field techniques focus attention on evaluations of fluctuations of 
both dynamic variables and constitutive property distributions about their respective means. 
At their lowest statistical order, fluctuations are characterized by (second-order) co-variances 
and cross-covariances. They are evaluated by numerous techniques that include: inference 
of prior information, stipulated properties, estimators from functional analysis, perturbation 
analyses, fluctuation PDEs, maximum likelihood, etc. (See for example, McGlaughlin and 
Townley [1996]; Gelhar [1993]; Dagan [1989]; Harter, Gutjahr, and Yeh [1996]; Hsu, 
Zhang, and Neuman [ 19961; among many others.) The other, less-used, approach is based 
on a hierarchy of partial differential equations (PDEs) for statistically averaged moments of 
constitutive properties and flow variables [Gelinas, Doss, Ziagos and Nelson, 1998, Neuman 
and Orr, 1993, and Dagan, 19891. Moment PDE heirarchies can be derived using either 
Langevin techniques or axiomatic techniques of classical and/or quantum physics, as 
discussed further below. When attempting to determine formation properties from 
measured data, both random field and moment PDE approaches seek to replace an ill-posed 
inverse problem by a well-posed one. Distinctly different formulations and solution 
techniques are used to represent and solve the defining equations in the respective 
approaches. In addition to subsurface flow problems, the random field and moment PDE 
hierarchy approaches have been applied for several decades in numerous other technical 
disciplines, for both classical and quantum systems. (See, for example, Osborn [1963]; 
Gelinas and Osborn [ 19661, [ 19671; Osborn et al [ 19671, [ 19681, Akcasu and Osborn 
[ 19661, Lax [1966], Gelinas [1976], among many others.) Advances in numerical PDE 
solution techniques and software tools have recently helped to resolve some of the long- 
standing issues that previously hampered application of the moment PDE approach in 
ground water problems [Gelinas et al, 19981. With the reasonable prospect of extending the 
new ground water techniques successfully to reservoir problems, the moment PDE 
approach was applied in this Phase I DeepLook project. A more specific description of 
Langevin and moment PDE approaches is sketched immediately below in the context of 
reservoir problems, 

Langevin techniques for random fields 

With the possible exception of manual history-matching, variants of basic Langevin (or 
random field) techniques are perhaps the most widely used approach in subsurface flow 
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problems today. Stochastic flow and constitutive property variables are represented by a 
mean plus a random fluctuation function (or “equivalent noise source” function) in 
Langevin approaches. As a simple example, consider a two-phase system of oil and water 
in isotropic media where sources, sinks, capillary pressure, and gravity effects are neglected. 
From Darcy’s law, the total fluid velocity, V(x), is expressed in a stochastic version of the 
Buckley - Leverett formulation (Appendix E) as 

V(x) = -M(x). [K(x) l VP(x)]. (A-1) 

The total fluid mobility, M(x), is taken to be a known function for present purposes. 
The absolute permeability, K(x), is a function of rock properties, which are not varying in 
time; and P(x) is the fluid pressure. The velocity is steady-state because changes in 
pressure equilibrate very rapidly relative to changes in fluid saturations. To develop a 
Langevin model based on Eq. (A-l), the fluid velocity and pressure are represented as 

V(x)= <V(x)>+ V(x), <V(x)> =o, (A-2) 

P(x)= <P(x)>+ P(x), <p’(x)> =o, (A-3) 

where V’ (x) and P’ (x) are random fluctuation functions and angle brackets denote 
statistical averages. Similarly, absolute permeability is represented as the random variable, 

K(x)= <K(x)>+ K’(x), <Is(x)> =o. (A-4) 

Random field methods focus largely on the evaluation of the fluctuation 
functions V (x) , P’ (x), and K’ (x), as well as their second moments, making extensive use 
of geostatistical stipulations, perturbation techniques, and functional analysis (‘estimator’) 
techniques. When the random variables V(x), P(x), and K(x) take specialized normal or 
log-normal forms, they are completely defined by their means and variances, from which 
uncertainties and prediction errors are readily estimated. These specialized forms of 
distribution functions may not, however, accurately represent physical conditions in an 
actual reservoir system. In such instances, results regarding not only the physical state but 
also estimated uncertainties in parameter realizations could be misleading. Nonetheless, 
such statistically-based parameter estimation techniques generally invoke certain 
specializations (e.g., Gaussian or multi-Gaussian distributions, spatially constant means, 
homogeneity, small log-transmissivity variances, etc.) in -order to make the calculation of 
parameter realizations tractable [Zimmerman et al, 19981. Formation property realizations 
are usually conditioned by more or less systematic comparisons between measured 
pressures, permeability, and forward model calculations of pressure. But, owing to its ill- 
posedness, an inverse flow PDE for permeability (or transmjssivity) is usually not explicitly 
solved and/or calibrated properly to permeability measurements. The odds are then 
overwhelming that estimated realizations of K(x) will fail to satisfy continuity constraints of 
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the flow equation in the sense of the inverse solution, for reasons that will become more 
apparent in later sections. Excellent summaries, reviews and their cited references of many 
of the existing approaches can be found in works by McLaughlin and Townley [1996], 
Zimmerman, et al [ 19981 , Dagan [ 19891, and Gelhar [ 19931. 

Moment PDE techniques 

An alternative stochastic approach is developed in terms of a statistical hierarchy of 
evolution equations (PDEs) for averages of moments, e.g., mean, mean-square, and possibly 
higher moments and cross-moments of flow and constitutive property variables. The 
averaged moments are in fact physical observables that describe both the dynamical 
evolution and the statistical properties of physical systems3. Statistical moments in ground 
water and reservoir problems are usually truncated at second-order; and the resulting system 
of moment PDEs is to be directly solved and calibrated with measured data. But, lirst, 
several long-standing problems that have prevented successful solution and calibration of F- 
I moment equations at the lowest statistical order require resolution if further progress is to 
be accomplished. 

Direct solutions of inverse flow equations for mean aquifer transmissivity have been 
investigated over a span of at least forty years with various method-of-characteristics, fixed- 
grid finite difference and finite element techniques. (See, for example, articles by R. W. 
Nelson [ 196 1, 19621, Emsellen and de Marsily [ 197 11, Frind and Pinder [ 19731, and Dagan 
[ 19891.) Well-known problems associated with non-uniqueness, noise, and mathematical 
instability were not mitigated satisfactorily in these and other similar efforts. Several 
essential tools and techniques were lacking; they include: 

l highly accurate dynamic adaptive-grid PDE solution methods, to help reduce or 
eliminate purely numerical sources of noise, 

. simultaneous solutions of nonlinear forward and inverse PDEs, to better constrain 
realizations and mitigate mathematical instability, 

. effective spatial filtering techniques, to help suppress noise in both pressure 
interpolations and derived pressure gradients, 

. calibration techniques that respect basic sampling principles for sparse data and 
non-uniqueness, 

l dynamic adaptive-grid finite element solutions of F-I flow equations, to interpolate 
transmissivity and pressure distributions, while also respecting measured datum 
points, and 

. calibration techniques that respect Cauchy problem requirements in the inverse 
equation [John, 1982; Courant and Hilbert, 1953; Hadamard, 19521. 

3 Although not the main point of this discussion, the calibration of modeled physical observables to 
measurements generally requires fewer datum points than corresponding calibrations of modeled probability 
distribution functions to measurements. We have therefore not considered pdf approaches in this work. 
Interested readers may, however, wish to peruse the interesting work of Carle and Fogg [ 1996a,b], which 
describes a pdf transition probability technique for estimating properties of porous media. 
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Recent advances in these six problem areas have apparently mitigated many of the classic 
barriers for solving ground water inverse problems with direct solutions of F-I moment 
PDEs [Gelinas et al, 19981. 

To develop the first-order moment equation for the oil-water example considered above, 
Equations (A-2) - (A-4) are substituted into Equation (A-l), Statistical averaging of the 
resulting equation gives 

< V(x) > = -M(x). [< K(x) > l V < P(x) > + < K’ (x)VP (x) >]. (A-5) 

Without loss of generality, M is taken to be identity for present purposes. For steady-state 
incompressible flow, the lowest-order PDE for flow in porous media with no sources or 
sinks is: 

v. < V(x) > = 0, (A-6) 

which can be written, using (A-5), as: 

V.[<K(x)>.V<P(x)>]+V.[<K’(x)*VP’(x)>]=O. (A-7) 

In a convenient operator notation for moment PDEs, the first-order flow equation (A-7) is 
written as 

L,(V,J = Q,. (A-8) 

The operator L, (y,,) represents the left-hand-side of the first-order moment equation. 
Functionally, it is the negative divergence of the mean Darcy velocity ( IJ’, ) , namely; 

L,(V,“)=V.[<K(x)>*V<P(x)>]=-V*Vn,, (A - 9a) 

where 

V,” 3 - < K(x) > l V < P(x) > . (A - 9b) 

The operator Q,on the right-hand-side of equation (A-8) involves a second-order mixed 
moment of absolute permeability and pressure gradient fluctuations about their respective 
means, namely, 

Q, =-V*<K’(x).VP’(x)> = V*V,, (A - 10a) 

where the ‘residual’ velocity V, is defined by 
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v, =-<K(x).Vp’(x)>. (A-lob) 

The residual velocity is a (second-order) cross-correlation term that contributes to the rate of 
change of the mean flow equation. Using equations (A-9) and (A-lo), equation (A-8) can 
readily be written as a conventional mean flow equation with an effective source term, Q, , as 

-V. Vm = Q,(V). (A-11) 

Owing to the presence of the second-order term V, in the mean flow equation (A-l 1). a 
second-moment PDE is generally needed for evaluating Q,. Second-moment PDEs are 
frequently integro-differential equations, as can be seen in the article by Neuman and Orr 
[ 19931. It serves our purpose here to again use operator notation, with spatial arguments 
suppressed, to represent the second-order moment PDE for If,-< K’ l VP’ > as 

L,(< IS *VP >) = f?(< K >,< P >,< K’ K’>,< p’ p’>), (A- 12) 

where third-order moments have been truncated. The right-hand-side of this equation (A- 
12) is a complicated function (f,) of the arguments indicated. Because Eqn. (A-12) depends 
upon second-order correlations, < K’K’> and < P’P’> the second-order hierarchy is 
completed by the PDEs for < K’ K’ > and < P’ P’ > , namely, 

L,(<K’K’>)=f,(<K>, <P>, <ISP’>, <p’p’>), (A - 13) 

L,(<P’P’>)=f,(<K>, <P>, <K’p’>, <K’K’>). (A - 14) 

To briefly summarize, the system of first- and second-moment PDEs is comprised of 
Equations (A-11) - (A-14). Several properties of the first-order flow equation are 
immediately evident: 

l If Q, is negligible, the mean flow equation (A-l 1) can be directly solved and 
calibrated to measured data if wellfield source terms and boundary conditions are known or 
stipulated to be statistically independent. In this instance, statistical properties can be 
evaluated separately from the mean flow PDE. 

l If the cross-correlation term (y )in Q, is Fickian (i.e., proportional to a mean 
coefficient times V a), solution of the moment PDE hierarchy is again separable in the 
sense that the mean flow equation (A-l 1) reduces to 

V.[<I?)>.V<P>]=O, (A - 15) 

which resembles the conventional source-free mean flow PDE with permeability < K > . In 
these two instances, with Q, equated to either zero or a Fickian function, the higher-order 
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moments may depend on the mean variables, but the mean variables do not depend on the 
higher-order moments. The mean and higher-order moments can then be calibrated to 
measured data by separate techniques without loss of generality. 

l If the cross-correlation term (V,) is believed to be known independently, e.g., from 
other geostatistical analyses, the PDE hierarchy may again be solved in a separable manner, 
using the F-I methods to solve and calibrate the mean flow equation (A-l 1), with Q,. given 
from other analyses. 

l Finally, when the permeability and pressure are significantly correlated, 
simultaneous solution and calibration of the coupled equations and (A-l 1) - (A-14) are 
generally required for the best results. General solutions of the moment PDE hierarchy are 
difficult to obtain in practice because the second-order moment PDEs (A-12) - (A-14) are 
usually nonlinear integro-differential equations [Neuman and Orr, 19931. It is possible, but 
not yet clear, that extended adaptive-grid techniques will fare significantly better than the 
specialized transform and Monte Carlo techniques used to date for the solution of integro- 
differential PDEs. 
Regardless of the significance of residual flux, Q, , appropriate sparse-data calibration 
techniques for the forward and inverse solutions of the lowest-order flow equation (A- 11) 
are of overriding importance. For it is at low-order where the classic problems of ill- 
posedness and mathematical instability reside. All stochastic inverse methods, including 
widely-used manual history-matching, are dependent upon the quality of the low-order 
simulations. Hence we have emphasized in this report only the lowest-order flow equation 
(A-l 1) for cases in which Q, is either Fickian or negligible. 
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Appendix B: Analytic Description of the F-I Method 

1. Simultaneous Conditioning of Forward and Inverse Flow Models 

In the interest of economy, this Appendix abstracts pertinent parts of the mathematical 
development of the new F-I modeling techniques from their original documentation in an 
LLNL report by Gelinas et al [ 19981. The context of the original developments was for 
single-phase flow in saturated porous media for ground water remediation problems. These 
techniques are being extended to F-I modeling of 2-D transient oil-water problems in this 
Phase I project, where the primary emphasis is on proofs of concepts. Analytic 
descriptions of the simultaneous F-I modeling techniques are presented here in their 
original notation pertaining to ground water aquifer problems. Additionally detailed 
mathematical proofs and text will be found in journal articles when they become generally 
available. 

To emphasize basic concepts without significant loss of generality, steady-state ground 
water flow in a confined aquifer is modeled according to Darcy’s law over regional scales. 
The steady-state flow equation in three spatial dimensions (3-D) can be written as: 

V*(KVh)+Q=O, (B-1) 

where K is the hydraulic conductivity of the aquifer, Vh is the hydraulic head gradient, and 
Q represents internal source and sink rates. When the aquifer thickness is substantially 
smaller than the horizontal scale of the flow domain, the two-dimensional (2-D) flow 
equation, 

V.(TVh)+Q = 0, 03-2) 

is a reasonable approximation for many aquifers. The transmissivity T is defined as the 
product of K and the aquifer thickness, b. (Unless otherwise noted, we exercise an 
understood convention in subsurface flow articles of using scalar notation for tensor 
quantities, e.g., K and T in this report.) A site characterized by borehole measurements of 
hydraulic head and transmissivity is depicted schematically in Figure B 1. Hydraulic head 
and transmissivity are measured at discrete locations in the domain, s2, and on its boundaries 
an. The thickness of the aquifer is assumed to be known from measurements, as are 
pumping sources and sink rates in equations (B-l) and (B-2). Transmissivity data are 
usually more sparse than head data. Head measurements are usually much more accurate 
and localized at the borehole than are transmissivity values. For convenience in this initial 
work, Q is henceforth taken to be zero. 
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[ 

0 Borehole measurements of h at M locations 
denoted by g= {hi = h(Xi, yi), i = 1, . . M} 

x Borehole measurements of T at n locations 
denoted by I= {Ti = T(Xi, yi), i = 1, . . N} 

Figure B-l: Remediation site domain R with boundary JR, 
characterized by discrete borehole measurements of 
h and T. 

The main task is to determine transmissivity distributions everywhere in a domain Q, 
based on knowledge of measured hydraulic head and transmissivity at a discrete and finite 
subset of SYI (see Figure 1). The data is assumed to fairly conform with the model 
assumptions of a steady-state condition of an aquifer region with no internal ground water 
sources or sinks. The case with non-zero sources/sinks is being developed in separate 
work. Because the present work focuses on the mathematical model for the lowest-order 
(mean) equations of the moment hierarchy, the angle brackets for statistical averages in the 
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text will henceforth be dropped for convenience. Also, to facilitate subsequent discussions, 
the following definitions are introduced here, referring to Figure B 1. 

s 

3r 

K’ 

(7 

Q 

s” 

i2 

C”(Q) 

A finite set of 2-D Cartesian coordinates { (x,,y,), i = 1, 2, . ..} at which measurements of 
hydraulic head are collected. This ‘fixed point set’ becomes part of the nodal assembly 
in the finite element solution of the governing PDEs. 

The set of measured head values on the set 3. 

Is constructed from 3f- by replacing all elements of X’ by those obtained from the 
somewhat smoothed solution h, in equation (B-9). 

A set of transmissivities inferred from other well tests at some subset of S. These will be 
referred to as transmissivity measurements. 

A domain in the x-y plane over which one attempts to solve for h and T and whose 
boundary afi is a polygon consisting of those linear segments joining the ‘outermost’ 
points of the set S. 

All points of S which are not included in asZ; S’= S - XL 

The entire domain excluding the set S; R’ = a - 3. 

The class of all continuously differentiable functions in n up to order n. 

Notice that it is always possible to construct R so that it is the convex hull of 3. 
However, such smallest convex set containing the set S could be inadequate in specific 
instances that are described in forthcoming journal articles. 

Starting from the mean flow equation for porous media with physical sources and sinks 
of ground water (Q) equal to zero, 

V . (TVh) = 0, (B-3) 

and assuming that h(x,y) is known everywhere in n, then equation (B-3) can in principle be 
solved for T(x,y) as the unknown dependent variable. This is the inverse solution process 
for T and is to be contrasted with the familiar usage of equation (B-3) to solve a forward 
problem for h when T is given everywhere in LL Frequently, equation (B-3) is referred to as 
the inverse equation when the inverse solution process is being considered; its solution, T, is 
then referred to as the inverse solution. Being a first order PDE in T, equation (B-3) can be 
solved by the method of characteristics provided that its coefficients satisfy some reasonable 
smoothness conditions. Although the classic characteristic approach is not employed in this 
work; the latent wealth of information pertaining to the theory of first order partial 
differential equations [Courant and Hilbert, 1953; John, 19821 is nonetheless employed 
extensively and implicitly in the present work. 

Sparsely measured head data (as well as sparse transrnissivity data) present both the 
major problem and the reason for transmissivity parameter estimation. Because of the lack 
of complete knowledge of h everywhere in a, it follows, that head gradients are not defined 
in all of fi2; and thus a PDE simply does not exist from which T can be determined. An 
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immediate way to proceed, then, is to find an interpolating surface that passes through all of 
the head datum points. Because a vast number of such surfaces often exist, one finds that, 
unless further constraints are imposed, the inverse solution (if found) will often yield 
unphysical transmissivity distributions. The cause of this difficulty is readily explained: 
most trial interpolating surfaces that pass through the measured head datum points form 
relative maxima or minima ‘spikes’ on the set 3, thereby violating the maximum-principle 
for elliptic differential equations. See, for example, Protter and Weinberger [ 19841. The 
interpolating surfaces must therefore be selected judiciously-which is the starting point for 
the developments in this work. 

For readers who may need a “refresher”, it is important to review briefly the method of 
characteristics for first-order quasi-linear differential equations. In order to write equation 
(B-3) in standard form, one assumes, momentarily, that the head, h, belongs to the class bf 
functions C2(Q). The theory of characteristics then leads one to solve the following set of 
autonomous ordinary differential equations (ODES): 

dx ah 
z=ax 

dy ah 
Ts=ay 

c = -TAh 
ds 

(B-4) 

(B-5) 

(B-6) 

where s is a parameter measured from some given ‘initial’ point (x,,y,,T,), and A denotes 
the Laplacian operator. The first two ODES (B-4) and (B-5) easily map the geometry of 
characteristic curves (or more precisely, the projection of the characteristic curves on the x-y 
plane) based solely on knowledge of head gradients. The third ODE determines T uniquely 
along the entire characteristic which passes through (x,,y,) and such that T=T, at s=O. In 
fact, if the parametric solutions: x=x(s,xO,yO), y=y(s,x,,y,) obtained from equations (B-4) 
and (B-5) are substituted into equation (B-6), the solution to equation (B-6) is obtained 
readily in the form 

T = T, exp{- j{Ah(z) dz}, 
0 

(B-7) 

which incidentally guarantees that T will always remain positive, as expected. It is assumed 
in equation (B-7) that the functional form of Ah is known at least along the characteristic 
curve through (x,,y,). Transmissivities would be completely determined everywhere in Q 
once T is given values along an entire non-characteristic initial curve F, provided that all of 
the characteristic curves emanating from I? sweep the entire domain Q. If not, one can only 
solve for T on the subdomain that is swept out by the characteristic curves. 

When dealing with the reality of non-smooth h, several daunting problems and concerns 
must be addressed. The first problem, the satisfactory resolution of head Laplacians from 
sparse data, is in practice intractable because the head gradients are often discontinuous on 
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R; and the head Laplacian is therefore undefined on all of Q. A second concern is that only 
one transmissivity value is needed on a characteristic curve in order to determine all other 
transmissivity values along that curve uniquely. If additional inconsistent values were to be 
assigned somehow on the same characteristic curve, as is frequently done in stochastic 
transmissivity parameterizations, zonation schemes, and history-matching techniques, 
fundamental ODE solution requirements for the inverse equation are contradicted and 
physical continuity is not respected in the inverse sense. 

A third problem is one of managing logistics; i.e., the bookkeeping of all generated 
characteristic curves emanating from some finite set of points traversing I for the 
eventuality of constructing the integral surface containing these characteristic curves. 
Thoughts concerning these problems motivated the present quest for more viable parameter 
estimation techniques-techniques that can solve simultaneous forward and inverse flow 
PDEs, augmented by spatial filtering PDEs for data smoothing, in a true physical 
continuum according to kinetic theory. 

The process developed here for heading off some of the classic difficulties mentioned 
above is composed of four basic steps. Each step can be described and verified separately 
before merging them finally into a simultaneous, iterative process for sparse, noisy data in 
field applications. The basic steps are: 

1. Form a trial interpolating surface h,(x,y) in R such that, on the discrete subset S ’ of 
Q, h, is forced to take on the corresponding measured values in the set K The 
interpolator employed here is a variant of the flow equation. 

2. Introduce and solve an additional PDE for smoothing h in LR. The amount of 
smoothing of spikes in h, at measurement points is controlled by user-selected 
parameters. This produces spatially filtered distributions h, that can deviate from X 
on the set S ’ by any preset amount. 

3. Introduce and solve two additional PDEs that produce smoothed head gradient 
components, u and v, from h, obtained above. It is extremely important to smooth 
head gradients prior to using them as coefficients in the inverse equation. 

4. Solve a regularized variant of the inverse equation (B-3) using a spatially filtered 
head gradient (u,v) in lieu of Vh. 

The first step is a ‘rough’ interpolation of the hydraulic head data. The key idea is to 
bring a stronger influence of physical dynamics to bear on the interpolation than is usually 
applied in geostatistical interpolation methods. An obvious choice is to use a variant of the 
mean flow PDE, itself, as the interpolator. Letting T be a constant average value (or any 
constant value), the interpolating equation is 

V.(TVh,) = 0. (B-8) 

It is important to note that equation (B-8) is to be satisfied in R’, rather than in the entire 
domain Q. The solution h is ‘pinned,’ or ‘clamped’, to the set Han the remaining set s’. 
In other words, h, is constrained to both respect the values of measured head and to satisfy 
the flow equation everywhere else in Q. This is directly analogous to solving mechanical 
stress problems with fixed loads at given coordinates. Galerkin numerical solution methods 
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are especially well-suited for solving these types of PDEs because they can respect the data 
at fixed points and yield optimized solutions that minimize PDE residuals over the rest of 
the problem domain. On &2, Dirichlet boundary conditions are assigned to h,. Linear 
interpolation is expedient but other methods of assignment may be used when they are more 
appropriate. 

This first trial interpolating surface is calculated in this work by employing a dynamic 
adaptive grid finite element code toolkit, FZexPDE, which enables the user to solve equation 
(B-8) in Q’, subject to the pinning constraints. (This feature was implemented in our 
version of the FZexPDE toolkit by its author, R.G. Nelson, specifically for development of 
the present inverse techniques. See the texts of Backstrom (1994, 1998) for not only 
specific information about using such advanced toolkits as PDEase and FZexPDE but also 
new modes of posing computational models with these emerging tools in order to respect 
and enforce essential mathematical requisites in complex physical problems.) 

The solution h, in this step is expected to possess relative maxima or minima that may 
be associated with several possible origins. First is the sweeping approximation of 
replacing T by its average value on R. While this might seem to be the major cause for 
such extraneous behavior, it is seldom the case. Other possible causes include: data errors 
or noise, ground water sources/sinks that were previously unknown, absence of a perfect 
steady-state in nature, and local/non-Darcy effects (equivalent sources). 

The second step performs an additional smoothing process on h, over Q in order to 
damp or completely diminish spurious spikes. It is necessitated because complete clamping 
of h, to Han S can create a corresponding set of local spikes, which cannot exist anywhere 
in !2, in the absence of physical sources or sinks. (When such spikes actually turn out to be 
previously unknown physical sources or sinks, the presently described techniques turn out 
to be useful ‘source-finders,’ which is another subject that will be considered as part of 
‘data-mining’ in future work.) Looking ahead to the next (third) step, much of the 
important information content from hydraulic head measurements, no matter how sparse or 
devoid of high spatial frequency information they may be, resides in the gradients and 
Laplacians of the head, as was indicated in previous discussion. The objective in the second 
and third steps is to extract as much information as possible by performing spatial filtering 
that is commensurate with the spatial intervals between the measured data [Bracewell, 19861. 
Such filtering is also required to produce a smoothed h, that effectively satisfies the 
maximum principle for elliptic differential equations. The clamping imposed on h,. is 
therefore relaxed at the measurement points by solving the following PDE for h, on R: 

Ah, + a (h, - h,) = 0 in R. (B-9) 

The Laplacian operation in the first term of equation (B-9) is recognized to be a 
bandpass filter function [McGillem and Cooper, 19841. It does not have a sharp cut-off at 
any spatial frequency; so some latitude can be exercised in Laplacian smoothing with this 
factor in mind. The second term in equation (B-9) can be viewed as a penalty function that 
controls the amount of smoothing of h, through proper choices of the parameter a. Clearly, 
very large a yields an h, that hardly differs from 4; that is, very little smoothing is done. 
And vice versa, as a approaches zero, h, approaches a harmonic solution in R. But too 
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much smoothing is obviously undesirable when it loses (by aliasing) significant amounts of 
information about the set Han S ‘. Criteria for the extent of smoothing in this step are 
discussed in technical journal submissions. (Recall that the average transmissivity assumed 
in the first step is not the final distribution that is sought.) The solution h, is then used to 
construct a new set H’ of smoothed heads on S ‘, and H’ replaces gin subsequent steps. 

The rationale for step three is built on the fact that the gradient of h,, and not h, per se, is 
the critical determinant in solving for T in step four. Because small deviations of h, from a 
correspondingly true head produce large deviations in calculated head gradient, this 
smoothing step is mandatory. The principle applied in the third step is similar to that in step 
two. Defining (u,v) to be the desired smoothed head gradients, relative to less-smooth 
gradients @h,/Jx,Jh,/Jy), the following two PDEs are introduced and solved for on R: 

ah, Au + p(- 
3X 

-u)=O in Q, 

Av+ fi(s-V) = 0 in Q2. 
ay 

(B-10) 

(B-l 1) 

The options used for assigning boundary conditions (BCs) for u and v on aQ are 
straightforward and are specifically discussed in journal submissions. 

The fourth step attempts to determine T based on knowledge of spatially filtered head 
gradient (u,v) obtained in step three. As part of a procedure that deals mainly with solutions 
of boundary value problems (BVPs) in steps 1-3, it is both desirable and advantageous to 
recast the inverse equation so that a BVP can be prescribed here as well. This is 
accomplished by solving a regularized version of equation (B-3) through the addition of the 
regularizing term &AT, for sufficiently small I, 

V*(Tu, Tv)+&AT = 0 in LL (B-12) 

This modified equation (B-12) is in principle an elliptic equation. But in practice it is 
essentially a hyperbolic PDE. The solution to equation (B- 12) can then be completely 
determined, provided that T is given along some non-characteristic curve F in the closure of 
Q and such that the continuum of characteristics emanating from F span the entire domain 
R. For brevity, a I curve that satisfies these conditions will be referred to as an admissible I 
curve. If no admissible F curve exists for the entire domain Q then one must partition R 
into two or more subdomains, each of which possesses its own admissible I curve. 
Fortunately, in the absence of sources and sinks in ground water flow problems, the 
geometry of characteristic curves is usually simple enough (but not trivial!) that it only 
requires the specification of a single admissible I curve. No further specification of T 
along the remainder of aQ is required. Such a ‘no specification’ boundary condition is 
exacted by recycling integrands in all boundary integrals that are produced from integration 
by parts in the numerical solution process [Oden et al, 19861. That is, whatever expression 
appears in a boundary integral, it is reused, as is, in forming the mass matrix of the Galerkin 
equations. 

B-7 



DeepLook Phase I Final Report UCRL-ID-126317 February I999 

It appears, so far, that knowledge about the projection of the characteristic curves (or 
simply characteristics) on the x-y plane for equation (B-12) with & = 0, enters in this 
analysis for the end-purpose of determining admissible curves F. Such a purpose could 
just as well be accomplished quickly by graphically investigating the normalized spatially 
filtered head gradient (u/s, v/s), s = (u’ + v’)*‘~ (i.e., a vector field plot). Knowledge about 
the characteristics, and more importantly how stably and efficiently they are determined, 
actually serve a broader goal in this work. Consider, then, the solution w of the following 
first order PDE: 

(B-13) 

and suppose I7 is an admissible curve in Q, which could be a part of &J. For simplicity, let 
w take on any monotonically increasing set of values along r, say for instance w = s, s 
being some parameterization of F such that 0 I s I 1 (see Figure B2). One can conclude 
from the theory of characteristics that the continuum of curves {w = C, 0 I C < 1) is 
precisely the set of all characteristic curves for equation (B-13). That is, if one can solve 
equation (B-13) ‘directly’ in Q in lieu of actually solving the standard ODES for the 
characteristic curves, namely, 

dx dy - = u, - = v, 
ds ds 

(B- 14) 

the entire geometry of characteristics is then obtained, all at once, from the knowledge of v. 
Such direct solution of equation (B-13) can be accomplished by regularization with the term 
.uQ, paralleling the previous discussion. The essential BC required here is that which is 
given along F, namely w = s; and ‘no specification’ BC is required along the remainder of 
&. The function v should not be confused with the classical stream function, which is 
usually defined as a solution of the Cauchy-Reimann equations and is obtained as the 
solution of a harmonic equation with proper choices of BC on &A. Classical stream line 
solutions obtained in this way are identical to w only for constant T. 
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Figure B-2: Schematic representation of an admissible r curve 
in a domain Q. Transmissivity values measured at 
(x,,‘, yO’) can be projected to the r curve by procedures 
developed in journal article submissions. 

Returning to equation (B-12), it is of interest to note its relationship to equation (B-13). 
For simplicity assume that both u and v are differentiable. Equation (B- 12) can then be 
written for & = 0 as, 

.;3T + Vi? + T(!t+ 
ax aY 

ax $) = 0. (B-15) 

In the absence of the last term (which is essentially TAh), equation (B-15) is identical to 
equation (B-13) with w replaced by T. The point to be made here is that the behavior of the 
solution process in (B-13) is expected to reflect on how the solution process to (B-15) will 
develop. In fact, it was found that it is often convenient to represent T in (B-12) as the 
product of two functions, 

T= CD.Ts, (B-16) 
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where T, is a general or generic solution to equation (B-12) with T, = 1 on F, and @ is a 
particular solution to equation (B-13) with Q = T, along r. It is clear from this specification 
that T = Tu on r. That the factorized form of T in equation (B- 16) formally satisfies (B- 12) 
is also straightforward to deduce. One can further notice that (u,v) only needs to be 
continuous along r in order for the representation (B-16) to make sense. Also notice that, if 
r is either a portion of the domain boundary aR or if it is an isocontour h(x,y) = constant, 
then no assumptions about the smoothness of (u,v) along r are required. The additional 
rationale for the T factorization will be addressed shortly. 

The foregoing analysis of the four main steps was presented as sequential steps so that 
each succeeding step builds on the results of the preceding one, but not vice-versa. The core 
algorithm presented in this work, however, consists of merging, with slight modification, the 
equations studied in these steps into a full-fledged system of coupled nonlinear equations. 
The purpose of the sequential presentation was to: (i) better understand the motivations and 
rationale leading to the creation and execution of each step; (ii) derive a new set of head 
values H’ that are more compatible with prospective transmissivity distributions than z and 
(iii) obtain a reasonably good starting set of trial values for the quartic {h, u, v, T} . 

The system of equations employed for the final determination of T is derived with few 
minor modifications from the four steps discussed previously. The system solved in this 
final stage consists of four PDEs in four unknowns {h, u, v, T} expressed as: 

V*TVh =O, (B-17a) 

Au+ol(&u)=O, (B- 17b) 

Av+a(&-v)=O, 
ay 

(B-17~) 

V .(Tu,Tv )+ PAT = 0. (B-17d) 

The main distinction between equations (B-17) and the previous individual steps is that 
equation (B-8) with constant average T in step 1 is replaced by equation (B-17a), with both 
T and h unknown. A similar distinction holds between equation (B-17d) and equation (B- 
12). Whereas equation (B-17d) treats T, u, and v as unknowns, equation (B-12) was solved 
only for T with u and v assumed known. Notice that no further smoothing of h, itself, is 
performed here. The smoothing of head gradients is however, retained. Discussions related 
to boundary conditions in the previous steps carry over to this system of coupled equations, 
with one exception. Namely, the set Hin step one is replaced by the set 3f-l here. Taken as 
a whole, the system of PDEs (B-17) is obviously nonlinear in the unknown variables {h, u, 
v, T}. As such, it is important to start with good initial trial estimates according to the 
procedures developed in this work for starting the Newton-Raphson linearization process 
employed in the numerical PDE solver. 
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As discussed previously for equation (B-16), one can factorize T as T =@*T, and solve 
the system (B-17) with T, in place of T, obtaining solutions for u, v, and T,. One can then 
obtain @ by solving separately, the following regularized PDE: 

a@ z+,,=On uX+v ay (B-18) 

The system (B-17) with T replaced by T, is devoid of any particular assignment of 
transrnissivity data along I?. (Recall that T, = 1 along l? under this factorization.) The 
system (B-17) therefore needs to be solved only once; and many different possible 
realizations of T along F can then be tested quickly by solving the simpler, single equation 
(B-18). The facility of T, = 1 on I? implies that a reasonable initial guess for the Newton- 
Raphson linearization could be taken as T, = 1 everywhere in s1. On the other hand, an 
assignment of highly varying T along I? when solving the original unfactorized T can lead to 
instabilities and outright divergence of the numerical solution process. 

Undersampling Effects 

The primary challenge of inverse modeling is to deal with the daunting problems 
associated with determining transmissivity realizations (images) between boreholes from 
sparsely sampled data, so that the realizations obtained will agree as closely as possible with 
the actual spatial distribution that exists in nature. The realizations sought must respect all 
applicable principles of mathematics, physics, and signal processing. For testing ground- 
truth notice that, if an inverse solution algorithm is somehow given a set of practically 
perfect (very highly-resolved) discrete data for transmissivity and head from a well-posed 
problem, the algorithm has no way of knowing that the problem was abstracted from one 
with a unique solution. So a first test of any inverse method/algorithm is that it should 
produce a close semblance of the unique transmissivity distribution when such a data set is 
provided. That is the type of test used here to establish a connection with ground-truth. 
Once that is established, the effects of sparse data sampling can be examined gainfully. 

Highly accurate adaptive-grid PDE tools enable one to construct ground-truth data sets 
for well-posed problems that do not have analytic solutions. The following such problem is 
constructed here with discontinuous transmissivity: A domain IR consisting of the square (- 
4 ~2 x _< 4) by (-4 I y 14) is selected. As shown in Figure B-3, Q is partitioned into 64 
equal blocks, or zones, of unit squares; and T is assigned a constant value on each of these 
64 zones. Notice that the constant zonal values of T alternate several times between 
increasing and decreasing, geometrically, giving rise to a haphazard staircase-like shape with 
a range of T between 1 and about 75. Given this distribution for transmissivity in Sz, the 
following boundary value problem (BVP) for h is solved numerically: Va(TVh) = 0 in Q 
along with the BCs h = 100 on the side x = -4; h = 10 on the opposite side, x = 4, and zero 
flux condition along the remaining sides y = &4. The solution to this BVP was obtained to 
a very high accuracy, using the PDEase toolkit. The solution obtained for the pair (T, h) is 
shown in Figure B-4 as head isocontours. To verify ground-truth of the inverse solution, a 
very dense set of discretely sampled datum points was then abstracted from the head 
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isocontours in Figure B-4. along with a dense set of discl-etely sampled transmissivity 
datum points only on the Cauchy line, taken to be along the vertical lint at x = -4. Provided 
with these sets of dense daltml points, the F-I algorithms described previously in this 
Appendix calculated a lransmissivity solution that was indistinguishable from the original 
distribution shown in Figure B-3. With ground-truth established, the effects of data 
undersampling are examined next. 

Y 

Figure B-3: Plot of synthetic transmissivity used to generate 
the ground-truth head solution. 
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FigureB-4: Isocontour plot of the ground-truth solution 
h(x,y). The contours a, b..., q correspond to h = 
15,20, . . . . 95 respectively. 

Sixty-four ‘measured’ h data are given only at the center co-ordinates of each of the 
64 blocks shown in Figure B-4, and T is given along the side x = -4; (-4 5 y 5 4). Exact 
transmissivity values were assigned along F in the calculation of the particular solution Q 
equation (B-17). Using the factorized methods described previously, the discontinuous 
transmissivity features of the ‘true’ solution (Figure B-3) are resolved as shown in Figure 
B-5 for T, and in Figure B-6 for T,,,. As expected, sharp discontinuities in the true T 
distribution of Figure B-3 are smoothed by the undersampling. The general features of 
the transmissivity distribution have however been reproduced with surprisingly good 
fidelity from the information contained in such few observation points, in our opinion. 
The Maximum Relative Error Norm (MREN) < 245%, and the Absolute Relative Error 
(ARE) < 19%. Maximum errors, as seen in Figure B-7, occur at the T discontinuities, as 
anticipated. It is here that adaptive grid PDE solvers apparently demonstrate their worth 
for calculating gradients with the maximum fidelity that is compatible with supporting 
measured data 
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Figure B-5: kocontour of T6 for TB= 1 along r. 

Y 

Figure B-6: T.,,. surface plot. This estimated transmissivity has the 
overall shape of the ‘true’ solution shown in Figure B-3. 
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X 
Figure B-7: Plot of MREN for the undersampled h and T. Maximum error occurs along 

horizontal lines between large changes in T and does not exceed 245%. The 
ARE is ~19%. 
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Appendix C: A Technical Description of FZexPDE Toolkit 

FZexPDE is a software tool for the solution of systems of partial differential equations. It offers 
an integrated problem solving environment, including a problem description language, a finite element 
numerical modeling facility, and graphical output of solutions. The interactive run-modify-run 
environment provides convenient, effective development and debugging of models. 

Equation Systems 
FZexPDE can treat boundary value and eigenvalue problems in two or three space dimensions, as 

well as initial/boundary value problems in two or three space dimensions plus time. Systems may 
contain equations of different types; e.g., elliptic, parabolic, hyperbolic, algebraic, etc. (Users must be 
cognizant of appropriate initial values, boundary values, and other mathematical requisites.) The 
equations are assumed to be of first or second order in space, and first order in time. Equations of 
higher order must be rewritten as systems of equations of lower order. Equations may be linear or 
nonlinear, and FZexPDE will automatically apply a solution method which is appropriate to the system. 
The number of simultaneous equations is limited only by the resources of the computer. 

Boundary Conditions 
Boundary conditions may be specified as arbitrary combinations of “value” and “natural” 

conditions. 

“Value” boundary conditions specify the value of a given dependent variable as a function of 
constants, spatial coordinates, and values or derivatives of dependent variables. “Natural” boundary 
conditions depend for their meaning on the way the equations are written, but in the usual case refer to 
the specification of a boundary flux. Natural boundary conditions are given as functions of constants, 
spatial coordinates, and values or derivatives of dependent variables. Consider for example the heat 
equation div(-K*grad(T))=H. Application of the divergence theorem to the left side reduces it to the 
surface integral of (-K*grad(T)), which is the meaning of the natural boundary condition, ie. the 
surface flux. 

Problem Domains 
Problem domains can be arbitrarily complex in two space dimensions, but contiguity is assumed. 

Two-dimensional domains may be made up of an arbitrary number of regions, with differing 
parameter definitions in all or any region. Three dimensional domains are constructed as layered 
extrusions of two-dimensional domains, and so are more restricted. Any number of layers may be 
specified, and material parameters may be different in any layer of any region. Layer interfaces may 
be non-planar, specified by arbitrary functions of 2D spatial coordinates, but must not intersect. 

Problem Descriptors 
FZexPDE uses a sophisticated grammar-based input format, which allows problem descriptions to 

be written in a compact and readable form, following very closely the mathematical description of the 
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equations and parameters. The problem domain is specified by walking the region boundaries, 
attaching boundary conditions as appropriate. 

Symbolic Equation Processing 
Equations and definitions presented in the problem descriptor are subjected to various 

symbolic operations internal to FZexPDE. This includes expansion of vector differential operators (div 
and curl), simplification of arithmetic, and formation of Gale&in integrals and Jacobian matrices. All 
these derived equations are held internally as computation trees, and are evaluated as needed during the 
progress of the solution. In this portion of its processing, FZexPDE is similar to a symbolic algebraic 
processor or a language compiler. 

Finite Element Model 
FZexPDE forms a Gale&in finite element model of the equation system, using quadratic or cubic 

basis functions involving nodal values of system variables only4. This model assumes that the 
dependent variables are continuous over the problem domain, but does not require or impose 
continuity of derivatives of the dependent variables. Second-order terms in the equations will give rise 
to various forms of flux continuity (through surface integrals generated by integration by parts), and 
these conditions will be imposed in an integral sense over the cell faces. 

Numerical Solutions 

During the symbolic processing of the equation system, FZexPDE detects whether the problem is 
time dependent or steady-state, linear or nonlinear, symmetric or nonsymmetric. Appropriate solution 
algorithms are then applied to effect an efficient solution. Symmetric steady-state systems attempt to 
apply an incomplete Choleski conjugate gradient iteration method (ICCG); if this fails, or if the 
system is time-dependent, a preconditioned conjugate gradient technique is applied. Nonsymmetric 
systems use a Lanczos (bi-conjugate gradient) iteration method. Nonlinear systems use a Newton- 
Raphson iteration with backtracking, while linear systems perform an iteration on residuals. 

Adaptive Meshes 
FlexPDE automatically generates an unstructured computational mesh of triangles or tetrahedra 

which fill the domain and match region boundaries. If the solution generated on the initial mesh fails 

4 There are ramifications to this model which require care on the part of the user. In electromagnetics, 
for example, the normal component of D is continuous across material interfaces, while the tangential 
component of E is continuous. It is not possible in general to satisfy both of these conditions if the 
field components themselves are chosen as the system variables. There are two ways to address this 
difficulty. First is to pose the problem in terms of potentials and not field components. The potential 
equation div(eps*grad(V))=rho accurately represents all the physical requirements of the system. The 
cell-face integral of the normal component of D will be continuous across material interfaces (this 
follows from application of the divergence theorem to the PDE), and the tangential component of E 
will be everywhere continuous on the interface (since V is single-valued on the interface). If the user is 
still determined to model field components instead of potentials, then he must restrict himself to 
problems in which the continuity requirements can be met, ie., in ,which some of the field components 
are missing. 
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to meet the user-specified error tolerance in every cell, then the mesh is adaptively reIined and a new 
solution is found. until the requested accuracy criterion is met. In time dependent problems, meshes 
will be refined where necessary, and un-refined where no longer required, so that mesh density will 
follow moving fronts. 

Graphical Output 
Graphical output can be requested for any function of independent and dependent variables and 

constants. Available graphic formats include contour plots, surface plots, elevations (line-outs), vector 
fields, and deformed meshes. Arbitrary function values, including area and surface integrals, can be 
reported on any plot, and a summary page can be written with reports of arbitrary function values. 

Availability 

FZexPDE is a product of PDE Solutions Inc. More information can be found on Internet at 
www.ndesolutions.com. 
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Appendix D: Listing of Problem Setup Commands 

FZexPDE Descriptor File for the forward Dome Model Problem (Figures 8-14 of text) 

{ DMHSS 1 --> Heterogeneous Sand (K=5.e-13)/Silt (K=5.e- 14) Dome Problem. } 

TITLE ‘OW Water-Drive Heterogeneous sand/silt’ 

SELECT 

errlim = 2.e-3 
nodelimit = 8000 
upwind = off 
firstparts 
m-update = 4 
tcenter = 1 

! Maximum error bound 

! Do not use FZexPDE upwinding 
! Force integration by parts of first order terms 
! Maximum number of Newton-Raphson Updates 
! Use the fully implicit BCE method 

VARIABLES 
s, P ! Main system variables: Saturation s and Pressure p. 

COORDINATES 
Cartesian (‘x’,‘z’) ! Default coordinate system is (x,y) 

DEFINITIONS 

po = table(‘dmhomlp.pOl’) 
saturation 

so= 0 
mu0 = 4.e-3 
muw = l.e-3 
Kref = 5.e-13 
K=Kref 
M = SA2/muw + ( l-S)A2/muo 
rhow = l.e3 
rhoo = .8e3 
g = 9.8 
gradz = vector(O,l) 

{ Read table of pressure variable for zero 

everywhere. Could use instead p0 = 1) 
! Initial Saturation 
! oil viscosity in Pascal second 
! water . . . . . . . . 
! Sand absolute permeability m*2 

! Total relative permeability 
! Water density Kg/m”3 
! Oil density 

! Gravitational acceleration m/s”2 

Mbar = rhow* S*2/muw + rhoo*( 1-S)*2/muo 
f = SA2/muwh4 
krw = SA2/muw 
V = -K*(M*grad(p) + Mbar*g*gradz) 
VW = - K*krw*(grad(p) + rhow*g*gradz) 
Pin = 1.5e6-rhow*g*z ! hydrostatic pressure along vertical sides of rectangle 

base 
Pout = Pin/2 ! extraction well pressure 

kmeter = 100 ! Dome diameter = length of rectangle base 
hkmeter = kmeter12 
w20 = .2*hkmeter !width of rectangle base 
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frac = hkmeterl8 ! distance of well center along axis x=hkmeter from dome 
crown 

tfrac = 2*frac 
hcz = _ ! Radius of extraction well 
hl = hkmeter-frac 
phi = .33 !porosity 
mag = -llsqrt(dx(p)A2+dz(p)A2) 
npx = dx(p)*mag 
npy = dz(p)*mag 
eps = 2.e-7 
area = 1 
truearea = integral(area) 
sint = integral(s)/truearea 
xl =-6 yl=4 x2 = -3 y2 = -5 

INITIAL VALUES 
= so 

;=po 

EQUATIONS 
phi*dt(s) + div(VW) - eps*div(grad(s)) = 0 
div(V) = 0 

! Saturation PDE 
! Pressure PDE 

BOUNDARIES 
REGION 1 

{ Describe the outline boundary of half circle atop a rectangle base. 
boundary 

Assign 

conditions as you move along} 
area = 1 
start(O,O) natural(p)=0 natural(s)=0 line to (kmeter,O) 
value(p) = Pin value(s) =1 line to (kmeter,w20) 
natural(p)=0 natural(s)=0 
arc(center=hkmeter,w20) angle=180 
value(p) = Pin value(s)= 1 finish 

REGION 2 K=Kref/lO 
{ Describe baffle-like regions. No BCs assignment is required} 

start (lO+xl,y1+5) 
line to (2O+xl,y1+5) to (2O+xl,yl+lO) to (3O+xl,yl+lO) 

to (3O+xl,y1+16) to (4O+xl,y1+16) 
to (4O+xl,y1+18) to (5O+xl,y1+18) 
to (5O+xl,y1+12) to (6O+xl,y1+12) 
to (6O+xl,y1+22) to (5O+xl,y1+22) 
to (5O+xl,y1+28) to (43+xl,y1+28) 
to (43+xl,y1+25) to (25+xl,y1+25) 
to (25+xl,y1+18) to (18+xl,y1+18) 
to (18+xl,y1+12) to (lO+xl,y1+12) 

finish 

start (53+x2,~2+35) 
line to (75+x2,~2+35) to (75+x2,~2+30) to (8O+x2,y2+30) 

to (8O+x2,y2+28) to (83+x2,~2+28) 
to (83+~2,y2+32) to (86+x2,~2+32) 
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to (9O+x2,y2+32) to (9O+x2,y2+25) 
to (9l+x2,y2+25) to (96-kx2,y2+25) 
to (96+x2,~2+35) to (84+~2,y2+35) 
to (84+x2,~2+40) to (53+x2,~2+40) 

finish 

EXCLUDE 3 area = 0 
{ Exclude the well interior region. Assign pressure BCs ) 

start (hkmeter-hcz,hkmeter+w20-frac) value(p)=Pout 
natural(s) = normal 
arc(center=hkmeter,hkmeter+w20-frac) angle=360 finish 

TIME 0 to 86400*2000 by 10 ! Time interval specification 

MONITORS 
for cycle= 10 
contour(s) 

! Displaying results} 

contour(s) zoom(hkmeter-frachkmeter-tfrac+w20, tfrac,tfrac ) 
contour(p) 
vector(npx,npy) 

PLOTS ! Storing results for later display 
for t = 0 by 86400*20 to 86400*2000 

contour(s) 
contour(s) zoom( hkmeter-frachkmeter-tfrac+w20, tfraqtfrac ) 
contour(p) 
vector(npx,npy) grid(x,z) 

HISTORIES ! Display and store production history array 
history(sint) at (0,O) print (500) 

END 

TITLE 'Dome UnderSampled Data (75 datum points) Full F-I (Figure 
22 of text) 

SELECT 
errlim = 4.e-4 
upwind = off 

scheme 
firstparts 

first order derivative term 
nrupdate = 12 

Raphson Updates 
gridlimit = 12 

regridding 
stages = 3 

coefficient 'eps' in the 

! Maximum error bound 
! Turn off FlexPDE internal UPWINDING 

! Turn on integration by parts of 

! Allow for not more than 12 Newton- 

! Upper bound on the number of 

! Stage downwardly on the diffusion 

! K equation. 

COORDINATES 
cartesian('x','z') 

of the default (x,y) 
! Use (x,z) coordinate system in lieu 

VARIABLES 
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P, u, V, K 
Filtered x-gradient, 

Permeability, respectively. 
DEFINITIONS 

! Main system variables: Pressure, 

! Filtered y-gradient, and 

p0 = table('dmhilp.pOl') 
{Read pressure data that was determined previously from a highly 

accurate 
forward simulation at zero water saturation and for a given 

permeability distribution. 
The task here is to investigate if one can recover, in some 

loose sense, this 
K-distribution when only a subset of p0 is provided. } 

px = dx(p) 
pz = dz(p) 
gradp = vector(px,pz) 
Vee = -K*gradp 
Vees = -K*vector(U,V) 

! Any known boundary pressure data are employed in the F-I 
scheme 

Pin = 1.5e6 
dome rectangular base 

Pout = Pin/2 

Kref = 1.0 

t 
kmeter = 100 

base 
hkmeter = kmeter/2 
w20 = . 2*hkmeter 
frac = hkmeter/8 

x=hkmeter from dome crown 
tfrac = 2*frac 
hcz = l/2 
hl = hkmeter-frac 

eps = staged (l.e5, 

! Inlet Pressure BC along vertical sides of 

! Extraction well pressure 

!Cauchy data assigned at wellbore 

RESERVOIR GEOMETRY 1 
! Dome diameter = length of rectangular 

! Width of rectangular base 
! Distance of well center along axis 

! Radius of extraction well. 

l.e4, 5.e3) 
! Staging on the diffusion coefficient 

Smoothing parameter used to mollify both of 
in the K equation 

alpha = .l 
U and V. 

I 

{ The next four parameters are used in creating a uniform 9 by 9 
lattice at 

which pressure values are assumed known. More recent versions of 
FlexPDE 

are capable of generating these types of lattices along with the 
assignment of 

arbitrary nodal pressure conditions. } 
x0 = 0 
zo = 0 
delx = . l*kmeter 
delz = . l*(w20thkmeter) 

D-4 



DeepLook Phase I Final Report UCRL-ID-126377 February 1999 

INITIAL VALUES 

P = po U=l V=l K = Kref { Starting values of P- 
K variables. While in linear 

problems these starting values 
are fairly arbitrary, a judicious 

choice is usually required in 
non linear problems, as is the case 

here.} 
EQUATIONS 

div(Vee) = 0 I 
Pressure PDE 

div(grad(U)) + alpha*(px-U) = 0 ! U PDE 
div(grad(V)) + alpha*(pz-V) = 0 ! V PDE 
div(Vees) + eps*div(grad(K)) = 0 ! K PDE 

BOUNDARIES 
REGION 1 

{, Describe the outline boundary of half circle atop a rectangular 
base. 

Assign BC's as you move along} 

start(O,O) natural(p)=0 value(U)=px value(V)=pz natural(K)=0 
line to (kmeter,O) 

value(p)=Pin line to (kmeter,w20) 
natural(p) = 0 natural(K) = 0 
arc(center=hkmeter,w20) to (O,w20) 
value(p)=Pin natural(K)=normal(Vees) line to finish 

EXCLUDE 2 
! Exclude the well internal region from domain and assign BC's 

start (hkmeter-4*hcz,hkmeter-frac+w20) value(p)=pO value(U)=px 
value(V)=pz 

value(K) = Kref 
arc(center=hkmeter,hkmeter-frac+w20) angle=360 finish 

I DEFINE ALL POINTS INSIDE DOMAIN AT WHICH PRESSURE IS KNOWN 
APRIORI 

! First Row fixed point for pinning of P 
Fixed Point (xO+delx, zO+delz) point value(P)=pO 
Fixed Point(x0+2*delx,zO+delz) point value(P)=pO 
Fixed Point(x0+3*delx, zO+delz) point value(P)=pO 
Fixed Point(xOt4*delx, zO+delz) point value(P)=pO 
Fixed Point(xOt5*delx, zO+delz) point value(P)=pO 
Fixed Point(xO+G*delx, zO+delz) point value(P)=pO 
Fixed Point(x0+7*delx, zO+delz) point value(P)=pO 
Fixed Point(xOt8*delx, zO+delz) point value(P)=pO 
Fixed Point(x0+9*delx, zO+delz) point value(P)=pO 

! Second Row fixed point for pinning of P 
Fixed Point(xOtdelx, zOt2*delz) point value(P)=pO 
Fixed Point(x0+2*delx, z0+2*delz) point value(P)=pO 
Fixed Point(x0+3*delx, z0+2*delz) point value(P)=pO 
Fixed Point(x0+4*delx, z0+2*delz) point value(P)=pO 
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Fixed Point(x0+5*delx, zO+Z*delz) point value(P)=pO 
Fixed Point(xO+G*delx, z0+2*delz) point value(P)=pO 
Fixed Point(x0+7*delx, z0+2*delz) point value(P)=pO 
Fixed Point(x0+8*delx, z0+2*delz) point value(P)=pO 
Fixed Point(x0+9*delx, z0+2*delz) point value(P)=pO 

! Third Row fixed point for pinning of P 
Fixed Point(xO+delx, z0+3*delz) point value(P)=pO 
Fixed Point(xO+2*delx, z0+3*delz) point value(P)=pO 
Fixed Point(x0+3*delx, z0+3*delz) point value(P)=pO 
Fixed Point(x0+4*delx, z0+3*delz) point value(P)=pO 
Fixed Point(xOtS*delx, z0+3*delz) point value(P)=pO 
Fixed Point(xO+G*delx, z0+3*delz) point value(P)=pO 
Fixed Point(x0+7*delx, z0+3*delz) point value(P)=pO 
Fixed Point 
Fixed Point 

x0+8*delx, z0+3*delz) point value(P)=pO 
xOtg*delx, z0+3*delz) point value(P)=pO 

! Fourth Row f xed point for pinning of P 
Fixed Point xotdelx, z0+4*delz) point value(P)=pO 
Fixed Point x0+2*delx, z0+4*delz) point value(P)=pO 
Fixed Point x0+3*delx, z0+4*delz) point value(P)=pO 
Fixed Point x0+4*delx, zOt4*delz) point value(P)=pO 
Fixed Point x0+5*delx, z0+4*delz) point value(P)=pO 
Fixed Point xOt6*delx, zOt4*delz) point value(P)=pO 
Fixed Point x0+7*delx, zOt4*delz) point value(P)=pO 
Fixed Point x0+8*delx, z0+4*delz) point value(P)=pO 
Fixed Point x0+9*delx, z0+4*delz) point value(P)=pO 

! Fifth Row fixed point for pinning of P 
Fixed Point(xOtdelx, zOt5*delz) point value(P)=pO 
Fixed Point(xOt2*delx, zOt5*delz) point value(P)=pO 
Fixed Point(xOt3*delx, zOt5*delz) point value(P)=pO 
Fixed Point(xOt4*delx, zOt5*delz) point value(P)=pO 
Fixed Point(xOt5*delx, z0+5*delz) point value(P)=pO 
Fixed Point(xOtG*delx, z0+5*delz) point value(P)=pO 
Fixed Point(x0+7*delx, z0+5*delz) point value(P)=pO 
Fixed Point(xOt8*delx, zOt5*delz) point value(P)=pO 
Fixed Point(xOt9*delx, zOt5*delz) point value(P)=pO 

! Sixth Row fixed point for pinning of P 
Fixed Point(xOtdelx, zOt6*delz) point value(P)=pO 
Fixed Point(xOt2*delx, z0+6*delz) point value(P)=pO 
Fixed Point(xOt3*delx, zOt6*delz) point value(P)=pO 
Fixed Point(x0+4*delx, zOtG*delz) point value(P)=pO 
Fixed Point(xOt5*delx, z0+6*delz) point value(P)=pO 
Fixed Point(xOtG*delx, z0+6*delz) point value(P)=pO 
Fixed Point(xOt7*delx, zOt6*delz) point value(P)=pO 
Fixed Point(x0+8*delx, z0+6*delz) point value(P)=pO 
Fixed Point(x0+9*delx, z0+6*delz) point value(P)=pO 

! Seventh Row fixed point for pinning of P ( 2 points fall outside 
dome ) 

! Fixed Point(xOtdelx, zOt7*delz) point value(P)=pO 
Fixed Point(xOt2*delx, zOt7*deLz) point value(P)=pO 
Fixed Point(xOt3*delx, zOt7*delz) point value(P)=pO 
Fixed Point(xOt4*delx, zOt7*deLz) point value(P)=pO 
Fixed Point(xOt5*delx, z0+7*delz) point value(P)=pO 
Fixed Point(xOtG*delx, z0+7*delz) point value(P)=pO 
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Fixed Point(xOt7*delx, zOt7*delz) point value(P)=pO 
Fixed Point(xOt8*delx, z0+7*delz) point value(P)=pO 

! Fixed Point(xOt9*delx, z0+7*delz) point value(P)=pO 

! Eighth Row fixed point for pinning of P ( 4 points fall outside 
dome ) 

!Fixed Point(xO+delx, z0+8*delz) point value(P)=pO 
! Fixed Point(xO+Z*delx, z0+8*delz) point value(P)=pO 

Fixed Point(xOt3*delx, z0+8*delz) point value(P)=pO 
Fixed Point(x0+4*delx, zOt8*delz) point value(P)=pO 
Fixed Point(x0+5*delx, z0+8*delz) point value(P)=pO 
Fixed Point(xOtG*delx, zOt8*delz) point value(P)=pO 
Fixed Point(x0+7*delx, zOt8*delz) point value(P)=pO 

! Fixed Point(xOt8*delx, zOt8*delz) point value(P)=pO 
! Fixed Point(xOt9*delx, zOt8*delz) point value(P)=pO 

! Ninth Row fixed point for pinning of P ( 7 points fall outside 
dome ) 

! Fixed Point(xO+delx, zO+g*delz) point value(P)=pO 
! Fixed Point(x0+2*delx, zO+g*delz) point value(P)=pO 
! Fixed Point(xOt3*delx, z0+9*delz) point value(P)=pO 

Fixed Point(x0+4*delx, z0+9*delz) point value(P)=pO 
! Fixed Point(xOt5*delx, zOtg*delz) point value(P)=pO 

Fixed Point(xOtG*delx, zO+g*delz) point value(P)=pO 
! Fixed Point(x0+7*delx, z0+9*delz) point value(P)=pO 
! Fixed Point(xOt8*delx, z0+9*delz) point value(P)=pO 
! Fixed Point(xOt9*delx, z0+9*delz) point value(P)=pO 

I DISPLAYING RESULTS I 

MONITORS 

grid(x,z) 
contour(p) 
contour(K) 
contour(U) 
contour(V) 

PLOTS 
grid(x,z) 
contour(p) 
contour(K) 
contour(U) 
contour(V) 

END 

contour(p0) 
contour(K) painted 
contour contour(U-px) 
contour contour(V-pz) 

contour(p0) 
contour(K) painted 
contour contour(U-px) 

contour contour(V-pz) 

TITLE 'Dome UnderSampled 9 By 9 Full F-I Nov 10 98' 

SELECT 
errlim = 4.e-4 
upwind = off 

scheme 
firstparts 

first order derivative term 

! Maximum error bound 
! Turn off FlexPDE internal UPWINDING 

! Turn on integration by parts of 
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nrupdate = 12 
Raphson Updates 

gridlimit = 12 
regridding 

stages = 3 
coefficient 'eps' in the 

COORDINATES 
cartesian('x','z') 

of the default (x,y) 

VARIABLES 
p, 'J, V, K 

Filtered x-gradient, 

February 1999 

! Allow for not more than 12 Newton- 

! Upper bound on the number of 

! Stage downwardly on the diffusion 

! K equation, 

! Use (x,z) coordinate system in lieu 

! Main system variables: Pressure, 

! Filtered y-gradient, and 
Permeability, respectively. 
DEFINITIONS 

p0 = table('dmhilp.pOl') 
{Read pressure data that was determined previously from a highly 

accurate 
forward simulation at zero water saturation and for a given 

permeability distribution. 
The task here is to investigate if one can recover, in some 

loose sense, this 
K-distribution when only a subset of p0 is provided. } 

px = dx(p) 
pz = dz(p) 
gradp = vector(px,pz) 
Vee = -K*gradp 
Vees = -K*vector(U,V) 

! Any known boundary pressure data are employed in the F-I 
scheme 

Pin = 1.5e6 ! Inlet Pressure BC along vertical sides of 
dome rectangular base 

Pout = Pin/Z ! Extraction well pressure 

Kref = 1.0 !Cauchy data assigned at wellbore 

1 RESERVOIR GEOMETRY } 
kmeter = 100 ! Dome diameter = length of rectangular 

base 
hkmeter = kmeter/Z 
w20 = . Z*hkmeter ! Width of rectangular base 
frac = hkmeter/8 ! Distance of well center along axis 

x=hkmeter from dome crown. 
tfrac = Z*frac 
hcz = l/2 ! Radius of extraction well. 
hl = hkmeter-frac 

eps = staged (1.e5, l.e4, 5.e3) 
! Staging on the diffusion coefficient 

in the K equation 
alpha = .1 ! Smoothing parameter'used to mollify both of 

U and V. 
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{ The next four parameters are used in creating a uniform 9 by 9 
lattice at 

which pressure values are assumed known. More recent versions of 
FlexPDE 

are capable of generating these types of lattices along with the 
assignment of 

arbitrary nodal pressure conditions. } 
x0 = 0 
zo = 0 
delx = . l*kmeter 
delz = . l*(wZOthkmeter) 

INITIAL VALUES 

P = po U=l V=l K = Kref { Starting values of P- 
K variables. While in linear 

problems these starting values 
are fairly arbitrary, a judicious 

choice is usually required in 
non linear problems, as is the case 

here.} 
EQUATIONS 

div(Vee) = 0 I 
Pressure PDE 

BOUNDARIES 
REGION 1 

div(grad(U)) t alpha*(px-U) = 0 ! U PDE 
div(grad(V)) + alpha*(pz-V) = 0 ! V PDE 
div(Vees) + eps*div(grad(K)) = 0 ! K PDE 

{ Describe the outline boundary of half circle atop a rectangular 
base. 

Assign BC's as you move along} 

start(O,O) natural(p)=0 value(U)=px value(V)=pz natural(K)=0 
line to (kmeter,O) 

value(p)=Pin line to (kmeter,wZO) 
natural(p) = 0 natural(K) = 0 
arc(center=hkmeter,w20) to (0,wZO) 
value(p)=Pin natural(K)=normal(Vees) line to finish 

EXCLUDE 2 
! Exclude the well internal region from domain and assign BC's 

start (hkmeter-4*hcz,hkmeter-fractw20) value(p)=pO value(U)=px 
value(V)==pz 

value(K) = Kref 
arc(center=hkmeter,hkmeter-frac+w20) angle=360 finish 

I DEFINE ALL POINTS INSIDE DOMAIN AT WHICH PRESSURE IS KNOWN 
APRIORI 

! First Row fixed point for pinning of P 
Fixed Point (xotdelx, zO+delz) point value(P)=pO 
Fixed Point(x0+2*delx,zO+delz) point value(P)=pO 
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Fixed Point(x0+3*delx, zO+delz) point value(P)=pO 
Fixed Point(x0+4*delx, zO+delz) point value(P)=DO 
Fixed Point 
Fixed Point 
Fixed Point 
Fixed Point 
Fixed Point 

x0+5*delx, zotdelz) point valueiPj=pO 
x0+6*delx, zO+delz) point value(P)=pO 
xOt7*delx, zOtdelz) point value(P)=pO 
xOt8*delx, zO+delz) point value(P)=pO 
xO+g*delx, zO+delz) point value(P)=pO 

! Second Row f xed point for pinning of P 
Fixed Point xotdelx, zOt2*delz) point value(P)=pO 
Fixed Point x0+2*delx, zO-t2*delz) point value(P)=pO 
Fixed Point x0+3*delx, z0+2*delz) point value(P)=pO 
Fixed Point xOt4*delx, zO-t2*delz) point value(P)=pO 
Fixed Point xOt5*delx, z0+2*delz) point value(P)=pO 
Fixed Point x0+6*delx, zO+Z*delz) point value(P)=pO 
Fixed Point(x0+7*delx, z0+2*delz) point value(P)=pO 
Fixed Point(x0+8*delx, z0+2*delz) point value(P)=pO 
Fixed Point(x0+9*delx, z0+2*delz) point value(P)=pO 

! Third Row fixed point for pinning of P 
Fixed Point(xOtdelx, zOt3*delz) point value(P)=pO 
Fixed Point(x0+2*delx, zOt3*delz) point value(P)=pO 
Fixed Point(xOt3*delx, zOt3*delz) point value(P)=pO 
Fixed Point(xOt4*delx, z0+3*delz) point value(P)=pO 
Fixed Point(x0+5*delx, z0+3*delz) point value(P)=pO 
Fixed Point(xOtG*delx, z0+3*delz) point value(P)=pO 
Fixed Point(xOt7*delx, zOt3*delz) point value(P)=pO 
Fixed Point(x0+8*delx, z0+3*delz) point value(P)=pO 
Fixed Point(xOt9*delx, z0+3*delz) point value(P)=pO 

! Fourth Row fixed point for pinning of P 
Fixed Point(xOtdelx, zOt4*delz) point value(P)=pO 
Fixed Point(x0+2*delx, z0+4*delz) point value(P)=pO 
Fixed Point(x0+3*delx, z0+4*delz) point value(P)=pO 
Fixed Point(x0+4*delx, zOt4*delz) point value(P)=pO 
Fixed Point(x0+5*delx, z0+4*delz) point value(P)=pO 
Fixed Point(xOtG*delx, z0+4*delz) point value(P)=pO 
Fixed Point(xOt7*delx, z0+4*delz) point value(P)=pO 
Fixed Point(xOt8*delx, z0+4*delz) point value(P)=pO 
Fixed Point(xO+9*delx, z0+4*delz) point value(P)=pO 

! Fifth Row fixed point for pinning of P 
Fixed Point(xO+delx, z0+5*delz) point value(P)=pO 
Fixed Point(xOtZ*delx, z0+5*delz) point value(P)=pO 
Fixed Point(x0+3*delx, z0+5*delz) point value(P)=pO 
Fixed Point(x0+4*delx, zOt5*delz) point value(P)=pO 
Fixed Point(x0+5*delx, z0+5*delz) point value(P)=pO 
Fixed Point(xOtG*delx, z0+5*delz) point value(P)=pO 
Fixed Point(x0+7*delx, zOt5*delz) point value(P)=pO 
Fixed Point(x0+8*delx, zOt5*delz) point value(P)=pO 
Fixed Point(x0+9*delx, z0+5*delz) point value(P)=pO 

February 1999 

! Sixth Row fixed point for pinning of P 
Fixed Point(xO+delx, z0+6*delz) point value(P)=pO 
Fixed Point(x0+2*delx, zOt6*delz) point value(P)=pO 
Fixed Point(xOt3*delx, zOt6*delz) point value(P)=pO 
Fixed Point(xOt4*delx, z0+6*delz) point value(P)=pO 
Fixed Point(xO+S*delx, z0+6*delz) point value(P)=pO 
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Fixed Point(xO+G*delx, zOt6*delz) point value(P)=pO 
Fixed Point(x0+7*delx, z0+6*delz) point value(P)=pO 
Fixed Point(x0+8*delx, zOt6*delz) point value(P)=pO 
Fixed Point(x0+9*delx, z0+6*delz) point value(P)=pO 

! Seventh Row fixed point for pinning of P ( 2 points fall outside 
dome ) 

! Fixed Point(xOtdelx, zOt7*delz) point value(P)=pO 
Fixed Point(x0+2*delx, z0+7*delz) point value(P)=pO 
Fixed Point(x0+3*delx, zOt7*delz) point value(P)=pO 
Fixed Point(x0+4*delx, zOt7*delz) point value(P)=pO 
Fixed Point(xOt5*delx, zOtci*delz) point value(P)=pO 
Fixed Point(xO+G*delx, z0+7*delz) point value(P)=pO 
Fixed Point(x0+7*delx, z0+7*delz) point value(P)=pO 
Fixed Point(x0+8*delx, zOt7*delz) point value(P)=pO 

! Fixed Point(xOt9*delx, zOt7*delz) point value(P)=pO 

! Eighth Row fixed point for pinning of P ( 4 points fall outside 
dome ) 

!Fixed Point(xOtdelx, zOt8*delz) point value(P)=pO 
! Fixed Point(x0+2*delx, z0+8*delz) point value(P)=pO 

Fixed Point(xOt3*delx, zOt8*delz) point value(P)=pO 
Fixed Point(x0+4*delx, zOt8*delz) point value(P)=pO 
Fixed Point(xOt5*delx, zOt8*delz) point value(P)=pO 
Fixed Point(xO+G*delx, z0+8*delz) point value(P)=pO 
Fixed Point(xOt7*delx, zOt8*delz) point value(P)=pO 

! Fixed Point(x0+8*delx, z0+8*delz) point value(P)=pO 
! Fixed Point(xOt9*delx, zOt8*delz) point value(P)=pO 

! Ninth Row fixed point for pinning of P ( 7 points fall outside 
dome ) 

! Fixed Point(xO+delx, zO+g*delz) point value(P)=pO 
! Fixed Point(xOt2*delx, z0+9*delz) point value(P)=pO 
! Fixed Point(xOt3*delx, z0+9*delz) point value(P)=pO 

Fixed Point(x0+4*delx, zOt9*delz) point value(P)=pO 
! Fixed Point(xOt5*delx, z0+9*delz) point value(P)=pO 

Fixed Point(xOtG*delx, z0+9*delz) point value(P)=pO 
! Fixed Point(x0+7*delx, z0+9*delz) point value(P)=pO 
! Fixed Point(xOt8*delx, z0+9*delz) point value(P)=pO 
! Fixed Point(xOt9*delx, z0+9*delz) point value(P)=pO 

I DISPLAYING RESULTS I 

MONITORS 

grid(x,z) 
contour(p) 
contour(K) 
contour(U) 
contour(V) 

PLOTS 
grid(x,z) 
contour(p) 
contour(K) 
contour(U) 
contour(V) 

contour(p0) 
contour(K) painted 
contour contour(U-px) 
contour contour(V-pz) 

contour(p0) 
contour(K) painted 
contour contour(U-px) 

contour contour(V-pz) 
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Appendix E: Black Oil Model for Example Problems 

A black-oil model (BOM) for oil-water systems is formulated here. It is the basis for 
the two example problems that are considered in the text. One problem is an idealized 
water-drive scenario on a 2-D horizontal rectangular domain (R) with zero gravitational 
forces; and the other is a 2-D vertical oil-dome model with gravitational forces. The flow 
systems are described by the mean flow equation in all cases, and stochastic residual flux 
terms are taken to be negligible. Residual fluxes are averaged second-order statistical 
fluctuation terms that contribute to the rate of change of the mean flow equation. They act 
like other source terms that may generally appear in the flow equation. Their neglect is not 
a serious limitation in proofs-of-concept at this stage of development. Additional 
implications pertaining to this assumption were discussed in Appendix A. 

The saturation of phase I is denoted by S,, 0 I S, II, with 
so+ s, = 1. (E-1) 

The usual convention for the indices, o for oil and w for water, is adopted here. Often, 
the water saturation is abbreviated as S and is referred to simply as ‘saturation‘ without any 
other qualifications. As in the article by Saad and Zhang [1998], simple parabolic relative 
permeabilities, K, and K,, , are assumed and expressed as 

(E-2a) 
(E-2b) 

The mobility, ?L, , of phase 1 is defined by, 

h, = Km, l w-b (E-3) 

where KS,, is the absolute rock permeability, and ltl is the viscosity of phase 1. For ease of 
writing, the subscript in KS,, will henceforth be dropped. Thus, in the remaining discussion, 
K will denote the saturation-independent permeability coefficient. Because capillary 
pressure is assumed to be zero, the oil and water pressures are equal and will henceforth be 
denoted by P. The total mobility, M, is defined as the sum of all mobilities divided by K. It 
follows from equations (E-l) - (E-3) that M is given by, 

M = S2& + (1 - S)2/&, (E-4) 

The total velocity V and the fractional flux fare defined as, 

V = - K l M grad(P), 
f = [S2@,]/M. 

(E-5) 
(E-6) 

If the porosity 9 is taken to be constant and gravity effects are negligible everywhere in 
Q it can be shown that the two PDEs governing a general two-phase flow reduce to, 

<pa,S + div(V l f) = 0, 
div(V) = 0. 

(E-7) 
(E-8) 
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Throughout this discussion, equations (E-7) and (E-8) are referred to as the saturation 
and pressure equations, respectively. This makes sense, since the former describes the 
saturation evolution for a known pressure distribution and a given initial saturation. And 
vise versa, the latter determines the pressure P everywhere for a known saturation 
distribution and given pressure boundary conditions (BCs). In fact, if the flow is assumed 
to be one-dimensional, say along the x-axis, then from equation (E-S), V must be a constant; 
and equation (E-7) yields the well-known Buckley-Leverett equation in the water saturation, 
namely, 

q&S + V&f = 0. (E-9) 

It is important to note here the vast distinction in the types of the two PDE’s, (E-7) and 
(E-8). On the one hand, the pressure equation (E-8) is a well-behaved elliptic equation. It 
is, in fact, ‘strongly elliptic’, since the coefficient M(S) is bounded from below by the 
positive constant l/(p,,+l~~ ). It is thus posed as a boundary value problem (BVP). The 
saturation equation (E-7), on the other hand, is of the hyperbolic type and should thus be 
treated as a Cauchy-initial-value problem. That is, the saturation equation is well-posed only 
if the initial saturation is given everywhere in R along with the saturation history over some 
‘admissible curve’, r. The significance of these distinctions will be discussed more 
extensively in later technical articles. 
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