bentbar

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Applications > Stress >

bentbar

Previous pageReturn to chapter overviewNext page

{ BENTBAR.PDE

     

 This is a test problem from Timoshenko: Theory of Elasticity, pp41-46

 

 A cantilever is loaded by a distributed shearing force on the free end,

 while a point at the center of the mounted end is fixed.

 

 The solution is compared to Timoshenko's analytic solution.

 

 The equations of Stress/Strain arise from the balance of forces in a

 material medium, expressed as

       dx(Sx) + dy(Txy) + Fx = 0

       dx(Txy) + dy(Sy) + Fy = 0

 where Sx and Sy are the stresses in the x- and y- directions,

       Txy is the shear stress, and  

       Fx and Fy are the body forces in the x- and y- directions.

 

 The deformation of the material is described by the displacements,

 U and V, from which the strains are defined as

       ex = dx(U)

       ey = dy(V)

       gxy = dy(U) + dx(V).

 

 The eight quantities U,V,ex,ey,gxy,Sx,Sy and Txy are related through the

 constitutive relations of the material. In general,

       Sx  =  C11*ex + C12*ey + C13*gxy - b*Temp

       Sy  =  C12*ex + C22*ey + C23*gxy - b*Temp

       Txy =  C13*ex + C23*ey + C33*gxy

 

 In orthotropic solids, we may take C13 = C23 = 0.

 In this problem we consider the thermal effects to be negligible.

 

}  

 

title "Timoshenko's Bar with end load"  

 

variables  

   U           { X-displacement }  

   V           { Y-displacement }  

 

definitions  

   L = 1               { Bar length }  

   hL = L/2  

   W = 0.1             { Bar thickness }  

   hW = W/2  

   eps = 0.01*L  

   I = 2*hW^3/3       { Moment of inertia }  

 

   nu = 0.3           { Poisson's Ratio }  

   E  = 2.0e11         { Young's Modulus for Steel (N/M^2) }  

                      { plane stress coefficients }  

   G  = E/(1-nu^2)  

   C11 = G  

   C12 = G*nu  

   C22 = G  

   C33 = G*(1-nu)/2  

 

   amplitude=GLOBALMAX(abs(v)) { for grid-plot scaling }  

   mag=1/amplitude  

 

   force = -250         { total loading force in Newtons (~10 pound force) }  

   dist = 0.5*force*(hW^2-y^2)/I       { Distributed load }  

 

   Sx = (C11*dx(U) + C12*dy(V))       { Stresses }  

   Sy = (C12*dx(U) + C22*dy(V))  

   Txy = C33*(dy(U) + dx(V))  

 

  { Timoshenko's analytic solution:  }  

   Vexact = (force/(6*E*I))*((L-x)^2*(2*L+x) + 3*nu*x*y^2)  

   Uexact = (force/(6*E*I))*(3*y*(L^2-x^2) +(2+nu)*y^3 -6*(1+nu)*hW^2*y)  

   Sxexact = -force*x*y/I  

   Txyexact = -0.5*force*(hW^2-y^2)/I  

 

initial values  

   U = 0  

   V = 0  

 

equations             { the displacement equations }  

   U:  dx(Sx) + dy(Txy) = 0  

   V:  dx(Txy) + dy(Sy) = 0  

 

boundaries  

  region 1  

    start (0,-hW)  

 

    load(U)=0         { free boundary on bottom, no normal stress }  

    load(V)=0  

      line to (L,-hW)  

 

    value(U) = Uexact { clamp the right end }  

    mesh_spacing=hW/10  

      line to (L,0) point value(V) = 0  

      line to (L,hW)  

 

    load(U)=0         { free boundary on top, no normal stress }  

    load(V)=0  

    mesh_spacing=10  

      line to (0,hW)  

 

    load(U) = 0  

    load(V) = dist   { apply distributed load to Y-displacement equation }  

      line to close  

 

plots  

  grid(x+mag*U,y+mag*V)   as "deformation"   { show final deformed grid }  

  elevation(V,Vexact) from(0,0) to (L,0) as "Center Y-Displacement(M)"  

  elevation(V,Vexact) from(0,hW) to (L,hW) as "Top Y-Displacement(M)"  

  elevation(U,Uexact) from(0,hW) to (L,hW) as "Top X-Displacement(M)"  

  elevation(Sx,Sxexact) from(0,hW) to (L,hW) as "Top X-Stress"  

  elevation(Txy,Txyexact) from(0,0) to (L,0) as "Center Shear Stress"  

 

end