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ABSTRACT: A finite element, magnetostatic analysis, of a brushless direct current motor

containing non-linear materials and permanent magnets is presented. The analysis is

performed with PDEaseTM, a low cost, two-dimensional partial differential equation solver. The

descriptor file is remarkably short and easy to understand, enabling students to focus on the

application and not on the finite element method. ß2001 John Wiley & Sons, Inc. Comput Appl Eng

Educ 9: 93–100, 2001
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INTRODUCTION

Electrical engineering students are taught the funda-

mental equations of electromagnetic field theory early

in their academic curriculum, but these equations can

be solved only for those problems which have

analytical solution. Nowadays, with the widespread

availability of personal computers, it is possible to

solve field equations for the rest of the problems via a

numerical method. Field simulations help engineering

students to understand the interrelation among field

quantities, sources and materials in a problem, and to

vastly improve their visualization.

Among the various numerical methods for solving

field equations, the finite element method (FEM) has

been known for several decades and applied to almost

any kind of problem at both low and high frequencies.

In order to exploit its powerful capabilities, students

can either write their own code or modify an existing

one or use a software package. The first two options

are not practical for undergraduate students because

they require knowledge beyond their level and

considerable amount of time. On the other hand most

software packages seem like black boxes since there is

no access to the underlying field equations. The

pedagogical gap between the source code and soft-

ware package options can be smoothed with the aid of

PDEase, a scalar finite element based solver of partial

differential equations [1].

Any student who is familiar with the differential

form of classic field theory can write a short problem

descriptor file, specifying the mathematical model and

the proper boundary conditions. The descriptor file

is text based with a format very close to usual
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mathematical notation. In addition, this format allows

a problem to be parameterized in terms of variables,

enabling thus quick trade-off studies by varying a

single parameter. The descriptor file is solved auto-

matically and the results appear in the form of plots as

requested. PDEase has the capability of automatic

mesh generation and mesh refinement which helps the

user to focus on the application and not on the finite

element method.

This paper demonstrates the use of PDEase in the

analysis of a brushless DC motor. This is a magnetic

field problem with non-linear materials and permanent

magnets. The difficult task of entering the compli-

cated geometry of this sample problem is greatly

simplified through the use of a geometric modeler.

The descriptor file for this problem is remarkably

short and easy to understand from a student with no

prior magnetic simulation or motor experience.

MAGNETOSTATIC FORMULATION

For static or slowly varying in time (quasi-static)

magnetic fields, the field intensity (H
~

) and flux density

(B
~

) must obey:

r� H
~
¼ J

~
ð1Þ

r � B
~
¼ 0 ð2Þ

subject to a constitutive relationship between B
~

and H
~

for each material. For non-magnetic and soft magnetic

materials this relationship is:

B
~
¼ mH

~
ð3Þ

while for hard magnetic materials (permanent magnets):

B
~
¼ mðH

~
þ H

~
cÞ ð4Þ

where H
~

c is the coercive field intensity of the

permanent magnet [2]. For isotropic materials the

magnetic permeability m is:

m ¼ m0 � mr ð5Þ

where mr is its relative permeability and m0 ¼ 4��
10ÿ7 H/m. If a material is non-linear m is a function of

B otherwise it is a constant.

In this paper the fields that satisfy the above

equations will be calculated via the magnetic vector

potential A
~

, defined by the equation:

B
~
¼ r� A

~
ð6Þ

which always satisfies (2). For every point of a

computational domain except those inside permanent

magnets, the combination of (1), (3), and (6) implies:

r� 1

m
r� A

~

� �
¼ J

~
ð7Þ

whereas for points inside permanent magnets the cor-

responding equation resulting from (1), (4), and (6) is:

r� 1

m
r� A

~
ÿ H

~
c

� �
¼ J

~
ð8Þ

Equation (8) is valid for every point in a com-

putational domain and for all materials since it

incorporates (7) for space regions outside permanent

magnets by simply setting there H
~

c ¼ 0. Thus, the

advantage of using the vector potential formulation is

that equations (1)–(4) which form the mathematical

model of the problem have been combined into a single

equation. In the general three-dimensional case, J
~

and

A
~

are vectors with three components each. In the two-

dimensional case, however, four of these components

are zero, leaving only the components in the ‘‘out

of the page’’ direction, i.e., J
~
¼ J(x,y)a

~
z and

A
~
¼A(x,y)a

~
z. If A is found, B

~
and H

~
can then be

deduced from (6) and (3) or (4) respectively.

TORQUE CALCULATION USING THE
MAXWELL STRESS METHOD

The most important parameter to calculate is often the

magnetically produced torque for a given rotor posi-

tion and current excitation. For the torque calculation

different methods exist. The most frequently used

methods are those where the torque is calculated

directly from the magnetic field solution in the motor.

Such methods are the virtual work method, the mag-

netizing current method, and the Maxwell stress

method (MSM). The accuracy of these methods

depends to a great extend on the accuracy of the

magnetic field calculation. In our case study we will

use the MSM due to its simplicity.

In the MSM the torque is calculated on the basis

of the magnetic field distribution on a closed surface

in the air gap around the rotor [3,4]. The differential

torque produced is:

dT ¼ 1

2
½ðr

~
� H

~
Þðn

~
� B

~
Þ þ ðr

~
� B

~
Þðn

~
� H

~
Þ

ÿ ðr
~
� n

~
ÞðH

~
� B

~
Þ� ð9Þ

The torque of the motor is obtained by creating a

surface totally enclosing the rotor and integrating the
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differential torque over that surface. Thus:

T ¼ 1

2

þ
ððr

~
� H

~
Þðn

~
� B

~
Þ þ ðr

~
� B

~
Þðn

~
� H

~
Þ

ÿ ðr
~
� n

~
ÞðH

~
� B

~
ÞÞdS ð10Þ

In the above equations r
~

is the position vector of the

point of integration and n
~

denotes the unit vector

normal to the surface. The torque is considered relative

to the origin of the coordinate system located at the

center of the stator.

BRUSHLESS DC MOTORS

A brushless DC motor consists of a rotor with

permanent magnets and a stator with windings. Rotor

motion is accomplished by generating a revolving

magnetic field in the stator windings, which interacts

with the permanent magnet fields. In fact, the magnets

‘‘chase’’ the rotating magnetic field and the energized

winding of the stator switches just as the rotor aligns

with the stator. The revolving field is created by

sequentially energizing the winding phase pairs. The

winding phase pairs are energized with current flow in

a set sequence to produce the desired direction of

rotation. At any instant, two of the three phases are

energized while the third phase is off. This means that

these motors do not operate directly off a DC voltage

source. The actual excitation is either squarewave or

sinewave current waveforms [5].

The most obvious advantage of the brushless

configuration is that brush maintenance is no longer

required and many problems associated with brushes

do not exist. For example, brushes tend to produce

radiofrequency interference and the sparking asso-

ciated with them is a source of ignition in inflammable

environments. In addition, brushless motors are

potentially cleaner, faster, less noisy, and more reliable

than induction motors. The rotor losses are very low

and the stator is easily cooled because of the fine slot

structure and the proximity of the outside air. Their

main disadvantages are: (i) the need for shaft position

sensing; and (ii) increased complexity in the elec-

tronic controller.

DEFINITION OF THE SAMPLE PROBLEM

Geometrical Characteristics

The geometrical characteristics of the brushless

motors vary from type to type. Figure 1 illustrates

the two-dimensional cross section of the motor

geometry which was selected as the sample problem

to be analyzed. The stator is made of steel and has 24

slots and a three phase winding (denoted as R, S, and

T). Any slot may contain conductors from one or two

different phases. The rotor consists of a central non-

magnetic shaft (modeled as air), surrounded by a

Cobalt–Nickel–Copper alloy. Four uniformly magne-

tized Neodymium–Iron–Boron magnets are mounted

on the rotor surface. The labels (N and S) inside each

magnet show the location of its poles and hence the

direction in which they are magnetized. The coils are

loaded through a three-phase set-up, with each phase

having into and out of plane directions. We use the

labels: Coil Rþ, Coil Rÿ, Coil Sþ, Coil Sÿ, Coil Tþ,

and Coil Tÿ. The outer diameter of the motor is 72

mm and the axial length is 60 mm. It is assumed that

magnetic flux losses to the outside are negligible and

for this reason any air surrounding the motor will not

be modeled.

Material Properties

Equation (8) denotes that we need to assign the values

of the permeability for each material. For the

nonlinear materials, such as the cobalt alloy and steel,

the permeability as a function of the flux density is

required. Manufacturers provide information about

their material in the form of a B–H curve. From these

curves we found the required functions by nonlinear

Figure 1 The two-dimensional cross section of the sample

problem.
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curve fitting. For the Cobalt–Nickel–Copper alloy we

will use the equation:

mðBÞ ¼ 8265 � e
ÿðBÿ0:63Þ13

0:02

ÿ �
� 1ÿ e

ÿB
0:19ð Þ

2:4

 !
þ 295

ð11Þ

while for the steel the corresponding equation takes

the form:

mðBÞ ¼ 5000

1ÿ 0:05 � B2
þ 200 ð12Þ

In the case of permanent magnets, manufacturers

provide information in the form of a demagnetization

curve, which lies in the second quadrant of the B–H

plane. This curve indicates the remanent flux density

Br (for H
~
¼ 0), the coercive field intensity H

~
c (for

B
~
¼ 0), and the manner in which B

~
and H

~
vary

between these two points. Rare-earth materials, such

as Neodymium–Iron–Boron (NdFeB) magnets, exhi-

bit an almost linear demagnetization curve and as a

result the linear model used in (4) is sufficient for

properly modeling them. From a manufacturer of

NdFeB magnets datasheet we read Br ¼ 1:16 T,

Hc ¼ 883310 A/m which according to:

B
~

r ¼ mH
~

c ð13Þ

implies a relative permeability equal to 1.045.

PDEase IMPLEMENTATION

The Problem Descriptor File

In PDEase any problem to be solved is specified by

means of a descriptor, which is simply a program

written in the command language of the package. At

first this seems rather cumbersome, but the advantage

is that we can program our geometry using variables

and then make changes very rapidly. A problem

descriptor file is divided into sections. Each one

describes a different type of information needed to

specify the problem and is composed of statements.

The descriptor file for the brushless DC motor

defined in the previous section is shown in Table 1,

along with comments for each statement. It can be

seen that each section begins with its pre-defined

(reserved) name to inform PDEase of the nature of

statements which it contains. PDEase processes a

problem descriptor file from top to bottom and cannot

make forward references. For example variables can

be used in the ‘‘Equations’’ section provided that they

have been declared in a previous section. For this

reason some parameters in the ‘‘Definitions’’ section

of the descriptor file are reserved for later use. It must

be pointed out that there is no need for user-input to

define the triangular grid; the finite element mesh

placement is automatic, although the user can alter the

default settings of PDEase such as the grid density or

the aspect ratio by adding the corresponding state-

ments in the ‘‘Select’’ section [1]. The statement

‘‘stages¼ 2’’ is used to stabilize a nonlinear problem.

In fact, this statement forces PDEase to run the

descriptor file twice for different values for the relative

permeabilities of cobalt alloy and steel. The first linear

solution is used as an initial condition for the second

non-linear one.

Importing a DXF Geometry File

In the ‘‘Boundaries’’ section of a descriptor file the

user must specify the geometric model that defines the

various regions or domains to be simulated. A model

can be created either by using the ‘‘line’’ and/or ‘‘arc’’

statements of the command language of PDEase [1] or

with the aid of a geometric modeler.

For complex geometries, like the motor presented

in this paper, the use of a geometric modeler is most

appropriate. Geometry data can be transferred from

AutocadTM to PDEase using a Drawing Exchange File

(DXF). However, in order to import a DXF file from

Autocad to PDEase we must specially format the

drawing. In general a drawing must be divided into

regions, i.e., closed domains with definable material

parameters that make up the physical geometry of the

problem and all regions must be organized on layers

[1]. As shown in Figure 2 the drawing of the motor

consists of 15 layers. All drawing elements on a given

layer are assigned the identical boundary conditions,

which are specified as text on this layer.

RESULTS AND DISCUSSION

The finite element solution gives the potential at the

nodes. This information by itself is usually of little

interest in machinery analysis. We use this informa-

tion to compute useful quantities such as flux density

and torque. PDEase post-processing capabilities allow

powerful generation and manipulation of graphics to

provide a comprehensive understanding of any device.

Initially, the mesh resulting from the discretiza-

tion process is shown in Figure 3. PDEase uses an

adaptive mesh generation technique and the above
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plot is the last and finer grid so that the field solution

meets the accuracy requirements specified for this

problem in the select section of the descriptor file.

This final grid contains 10,369 nodes and 5,106 trian-

gular elements. The meshing algorithm also detects

the ‘‘feature’’ named ‘‘circle’’ and uses it to refine the

mesh by adding extra nodes along the periphery of the

circle. This allows us to compute the fields in the air

gap and the torque more accurately.

Figures 4 and 5 show a contour and surface plot

respectively of the magnetic vector potential A over

the whole model. From these figures it can be seen

that the zero Dirichlet boundary condition that we

imposed at the outer surface of the motor is identically

Table 1 Problem Descriptor File

Code Syntax Comment

Title Brushless DC Motor The Name of the Problem

Select

stages¼ 2

errlim¼ 1e-5

ngrid¼ 50; aspect¼ 1.5

We request two runs for the non-linear problem

Requested relative accuracy

Parameters to control the mesh density

Variables

A Declare A to be the system variable.

Definitions {S.I. Units}

mu0¼ 4*pi*1.0e-7

mur1¼ 1; mur2¼ 1.045

J1¼ 0

J2¼ 1500000

J3¼ÿ1500000

mur

J

C¼ 883310

Hcx¼ 0; Hcy¼ 0

Hc¼ vector(Hcx,Hcy)

H¼ curl(A)* (1/(mur*mu0))ÿHc

Bxc¼ dy(A); Byc¼ÿdx(A)

B¼ vector(Bxc,Byc)

Babs¼ sqrt(Bxc**2þ Byc**2)

muralloy¼ if stage¼ 1 then 8265

else 8265*exp[ÿ(Babsÿ0.63)**13/0.02]*

[1ÿ(exp(ÿBabs/0.19)/2.4)]þ295

mursteel¼ if stage¼ 1 then 5000

else 5000/(1ÿ0.05*(Babs)**2)þ200

Rho¼ vector(x,y)

dTorque¼ 1/2*((cross(Rho,H)*(normal(B)))þ
(cross(Rho,B))*(normal(H)))

Permeability of free space

Relative permeability of air and magnets respectively

Current density in coils Tþ and Tÿ
Current density in coils Rþ and Sÿ
Current density in coils Rÿ and Sþ
Relative permeability parameter reserved

Current density parameter reserved

Coercive field intensity of NdFeB magnets

Coercive field intensity components

Coercive field intensity vector

Magnetic field intensity vector

Magnetic flux density components

Magnetic flux density vector

Magnitude of magnetic flux density

Relative permeability of Cobalt Alloy as a function of flux

density (equation 11)

Relative permeability of steel as a function of flux density

(equation 12)

The position vector of the (x,y) point

Differential torque to be integrated along the air gap

(equation 9)

Equations

curl(H)ÿJ¼ 0 The magnetostatic equation to be solved

Boundaries

dxf_import(Motor¼ ‘‘motor.dxf’’)

feature 16

start ‘‘circle’’ (ÿ0.01745,0) arc(center¼ 0,0)

angle¼ÿ360

Importation of the geometry file

Draws a circle around the air gap

Plots

contour(A)

surface(A)

vector(Bxc,Byc)

elevation(normal(B),tangential(B)) on ‘‘circle’’

elevation(dTorque) on ‘‘circle’’

Contour plot of the magnetic vector potential A

Surface plot of A

Vector plot of the flux density B

Bn and Bt along the air gap periphery

The area under this plot equals the torque per unit of axial

length of the motor

End Declare the end of the descriptor file.
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satisfied. We can also observe the symmetry of the

solution which reflects the symmetry of the geometry.

The magnetic flux density strength and direction can

be visualized through the use of a vector plot as shown

in Figure 6. The vectors show the direction of the flux

flow and their size show the magnitude. This figure

indicates large flux density concentration in the air

gap between the stator and the rotor. It is well known

that the air gap flux distribution is essential because

the energy conversion is processed through the air

gap. For this reason the normal and tangential

components of the flux density along the air gap

periphery are illustrated in Figure 7.

Finally, Figure 8 shows the differential torque

along the air gap periphery. The area under this plot

equals the torque per unit of axial length. To get the

actual torque of the motor, this value has to be

Figure 2 The imported geometry in DXF format.

Figure 3 Discretization of the problem geometry. Figure 4 Contour lines of the magnetic potential A (Wb/m).
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multiplied by its axial length. For the 60-mm long

motor we have:

Torque ¼ 2:959 Nm=m� 60 mm

¼ 177:54� 10ÿ3 Nm ð14Þ

To calculate the torque for different angular positions

of the rotor we only have to rotate the rotor assembly

(in the dxf file) and then re-execute the descriptor file.

It is also possible to radially displace the rotor

assembly with respect to the center of the stator, in

order to study the effect of miscentering on the torque.

In this case the third term in equation (9) must also be

included in the corresponding statement of the

descriptor file since r
~
� n

~
is no more zero.

A final remark concerns the fundamental question

whether to perform a two- or three-dimensional

analysis. Though a two-dimensional analysis may

seem less accurate than a three-dimensional one, it

actually may yield more accurate results when non-

linear materials are present and the end effects are not

important. Moreover, the time required for a two-

dimensional simulation is often about 10% that of the

three-dimensional one and thus the best approach is to

perform the analysis and optimization in two-dimen-

sional and then check the results in three-dimensional

[6]. This validation could be done in FlexPDETM [7], a

three-dimensional partial differential equation solver,

which uses virtually the same syntax as PDEase.

CONCLUSIONS

In this paper the application of the finite element

method for the two dimensional magnetostatic analysis

of a brushless DC motor was presented. The analysis

was performed in the PDEaseTM enviroment, a low

Figure 5 Surface plot of the magnetic potential A.

Figure 6 Vector plot of the flux density B.

Figure 7 The normal and tangential components of the

flux density along the air gap periphery.

Figure 8 The differential torque along the air gap.
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cost partial differential equation solver with automatic

mesh generation and refinement capabilities. The

descriptor file for this problem is remarkably short and

easy to understand due to its very close to usual

mathematical notation syntax. This kind of software

can be very beneficial to engineering students in order

to strengthen their understanding of field’s theory

differential form, boundary conditions, and the role of

material properties. Additionally, it can raise student’s

interest and appreciation on abstract mathematical

formulations because they can easily see their

application and solution for real world problems. In

this way they can acquire the solid background needed

to use specialized packages.
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