3d_plate

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Usage > Eigenvalues >

3d_plate

Previous pageReturn to chapter overviewNext page

{ 3D_PLATE.PDE

 

 This problem considers the oscillation modes of a glass plate in space

 ( no mountings to constrain motion ).

           -- Submitted by John Trenholme, Lawrence Livermore Nat'l Lab.

 

}  

 

TITLE 'Oscillation of a Glass Plate'  

 

COORDINATES  

 cartesian3  

 

SELECT  

   modes = 5  

   ngrid=10  

   errlim = 0.01 { 1 percent is good enough }  

 

VARIABLES  

   U           { X displacement }  

   V           { Y displacement }  

   W           { Z displacement }  

 

DEFINITIONS  

   cm = 0.01       { converts centimeters to meters }  

 

   long = 20*cm   { length of plate along Y axis }  

   wide = 10*cm   { width of plate along X axis }  

   thick = 1.2*cm { thickness of plate along Z axis }  

 

   E = 50e9       { Youngs modulus in Pascals }  

   nu = 0.256     { Poisson's ratio  }  

   rho = 2500     { density in kg/m^3 = 1000*[g/cc] }  

 

  { constitutive relations - isotropic material }  

   G = E/((1+nu)*(1-2*nu))  

   C11 = G*(1-nu)    C12 = G*nu    C13 = G*nu  

   C22 = G*(1-nu)    C23 = G*nu    C33 = G*(1-nu)  

   C44 = G*(1-2*nu)/2  

 

  { Strains }  

   ex = dx(U)    ey = dy(V)    ez = dz(W)  

   gxy = dy(U) + dx(V)    gyz = dz(V) + dy(W)    gzx = dx(W) + dz(U)  

 

  { Stresses }  

   Sx  =  C11*ex + C12*ey + C13*ez  

   Sy  =  C12*ex + C22*ey + C23*ez  

   Sz  =  C13*ex + C23*ey + C33*ez  

   Txy =  C44*gxy    Tyz =  C44*gyz    Tzx =  C44*gzx  

 

  { find mean Y and Z translation and X rotation }  

   Vol = Integral(1)  

 

  { scaling factor for displacement plots }  

   Mt =0.1*globalmax(magnitude(x,y,z))/globalmax(magnitude(U,V,W))  

 

INITIAL VALUES  

   U = 1.0e-5    V = 1.0e-5    W = 1.0e-5  

 

EQUATIONS  

  { we assume sinusoidal oscillation at angular frequency omega =sqrt(lambda) }  

   U:  dx(Sx) + dy(Txy) + dz(Tzx) + lambda*rho*U = 0   { X-displacement equation }  

   V:  dx(Txy) + dy(Sy) + dz(Tyz) + lambda*rho*V = 0   { Y-displacement equation }  

   W:  dx(Tzx) + dy(Tyz) + dz(Sz) + lambda*rho*W = 0   { Z-displacement equation }  

 

CONSTRAINTS  

   integral(U)=0               { eliminate translations }  

   integral(V)=0  

   integral(W)=0  

   integral(dx(V)-dy(U)) = 0   { eliminate rotations }  

   integral(dy(W) - dz(V)) = 0  

   integral(dz(U) - dx(W))  = 0  

 

EXTRUSION  

  surface "bottom" z = -thick / 2  

  layer "plate"  

  surface "top" z = thick / 2  

 

BOUNDARIES  

  region 1 { all sides, and top and bottom, are free }  

      start( -wide/2, -long/2 )  

      line to ( wide/2, -long/2 )  

      line to ( wide/2, long/2 )  

      line to ( -wide/2, long/2 )  

      line to close  

 

MONITORS  

  grid(x+Mt*U,y+Mt*V,z+Mt*W) as "Shape"  

      report sqrt(lambda)/(2*pi) as "Frequency in Hz"  

 

PLOTS  

  contour( W ) on z = 0 as "Mid-plane Displacement"  

      report sqrt(lambda)/(2*pi) as "Frequency in Hz"  

  grid(x+Mt*U,y+Mt*V,z+Mt*W) as "Shape"  

      report sqrt(lambda)/(2*pi) as "Frequency in Hz"  

 

  summary  

      report lambda  

      report sqrt(lambda)/(2*pi) as "Frequency in Hz"  

 

END