title 'quarter cylinder' coordinates ycylinder variables u definitions k=100 {conductivity W/mK} H=5*10^(-3) {height of the cylinder m} RA=0.625*10^(-2) {radius of the cylinder m} RL=1*10^(-3) {radius of the laser-beam m} Ql=1000 {laser energy W} !t_pulse = ... {time of one single pulse} !deltat_pulse=... {distance between single pulses} !lambda=... {wavelength of the laser} !f=... {frequency} initial values u=320 {fixed temperature of the surface of the cylinder K} EQUATIONS !Tp: dx(k*dx(u))+dy(k*dy(u))+Q =dt(u) u: Div(-k*grad(u))+Ql = 0 boundaries region 1 {rotation axis in the origin of the z-axis} start (0,0) natural(u)=u line to (RA,0) natural(u)=u line to (RA,H) natural(u)=u line to (RL,H) {laser energy along the line 0-RA} value(u)=u+Ql {fixed temperature at the surface of the cylinder + energy input} line to (0,H) natural(u)=u line to close time 0 to 0.01 by 5 monitors for cycle=2 elevation(u) from (0,H) to (RA,H) {radial wave propagation on the point H} elevation(u) from (0,H) to (0,0) {vertical wave propagation on the rotation axis} elevation(u) from (0,H) to (RA,0) {diagonal wave propagation in r,z-direction} history(u) at (0,0) (RL/2,0) (RL,0) {time dependet radial temperature distribution} history(u) at (0,H) (RL/2,H) (RL,H) {time dependet vertical temperature distribution} history(Ql) at (0,0) (RL/2,0) (RL,0) history(Ql) at (0,H) (RL/2,H) (RL,H) plots for t= 0 by 0.01 to 5 contour(u) surface(u) grid(z,r) END