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Abstract

A complete mathematical model for a multi-bearing rotor system incorporating a
newly developed active journal bearing has been presented. Both a non-linear model
and a general linearization method have been developed. The system configuration
parameters (the relative positions of the bearings) were expressed explicitly in the
equations of motion. Therefore it makes it convenient to carry out dynamic analysis of
the rotor system in either the rotating speed domain or the system configuration
parameter domain. The Guyan matrix condensation technique has been adopted to
reduce the number of equations in the equations of motion. The developed
mathematical model has been used in predicting the critical speeds, thresholds of
instability and unbalance response of a multi-bearing rotor system.

1  Introduction

Increasing demands for high performance rotating machinery have made the rotor
dynamic problems more and more complex, and more and more attention has been
drawn on rotordynamics. Modelling and computer simulation technology have been
widely used in designing and analysing rotor-bearing systems.

A multi-bearing rotor system is statically indeterminate. Its dynamic behaviour
depends on the relative positions of the bearings as well as the properties of its
subsystems. The relative positions of bearings are usually referred to as system
configuration, or bearing alignment (Parszewski and Krodkiewski, [1]). Therefore, the



dynamic properties of a multi-bearing rotor system are a function of the rotating speed
and the system configuration. Consequently, the investigation of the system dynamic
behaviour can be undertaken in two domains. One is in the rotating speed domain,
where the analysis of the threshold speed of instability and the critical speeds of the
system is the major concern. The other is in the configuration domain, where the
analysis of the system properties, at the operating speed, as a function of the bearing
alignment is the main interest.

The dynamics of a rotor system supported by fluid film bearings is inherently a non-
linear problem. Both linearized methods and non-linear approaches have been used in
the modelling and solving rotor dynamic problems. Linearized models are commonly
used in predictions of critical speeds, vibration response and instability threshold in a
large range of operating points. Non-linear models are used not only to verify results
obtained from linearized model, but also to study some important rotor-bearing
dynamic phenomena. These phenomena such as sub-harmonic resonance and limit
cycles cannot be observed without accounting for highly non-linear forces produced by
fluid-film bearings under large amplitude vibrations. Lund [2] used a linearized model
to calculate the threshold speed of instability and damped critical speeds of a flexible
rotor supported by journal bearings. Adams [3] used a non-linear model to simulate the
response of a multi-bearing rotor system.

In order to develop high performance rotating machinery, active vibration control
has been paid growing attentions to improve the system dynamic properties by
employing active devices. These active devices include: magnetic bearings
(Schweitzer, [4]), piezoelectric bearing pushers (Palazzolo et al., [5], Ulbrich and
Althaus, [6]), hydraulic actuator journal bearings (Ulbrich and Althaus, [6], [7]),
variable impedance bearings (Feng and Xin, [8], Goodwin et al., [9,10]), damper using
electro-rheological fluids (Nikolajsen and Hoque, [11]), deformable bushes (Kicinski
and Materny, [12]), and active journal bearing with a flexible sleeve (Krodkiewski and
Sun, [13]).

This paper presents a modelling technique of multi-bearing rotor system
incorporating the newly developed active journal bearing presented by Krodkiewski
and Sun [13]). Both a general non-linear model and a linearization method are
presented with numerical solutions and simulations.

2  Description of the active journal bearing.

The flexible sleeve can be considered as a new feature of the proposed active journal
bearing as shown in Fig. 1. The sleeve is activated by the chamber pressure pc which is
controlled by valves in the hydraulic system. The oil film of the bearing is separated
from the pressure chamber by the flexible seal. Therefore, the chamber pressure will
not influence the boundary conditions of the oil film.

The deformation of the flexible sleeve can be changed by adjusting the chamber
pressure. Therefore the geometry and thickness of the oil film, and hence the dynamic
properties of the rotor system, can be controlled without stopping the operation of the
machine. The chamber pressure can also be changed dynamically by a servo valve. So
the active journal bearing can deliver dynamic control forces to the rotor via the oil
film to control the forced vibration by either an open-loop means or feedback
approaches.



3  Modelling of the active journal bearing

3.1  Modelling of the Flexible Sleeve
To obtain the stiffness and mass matrices of the flexible sleeve, the finite element
method (FEM) was employed. The flexible sleeve was considered as a curved
cantilever beam. Each node has three degrees of freedom (DOF) s, n, υ, which
correspond to nodal forces S, N and M as shown in Fig. 2. By assembling the
individual elements along the global co-ordinates xg, yg and vg, the initial model of the
flexible sleeve was obtained.

In order to reduce the number of DOF, the Guyan reduction technique (Guyan,
[14]) was used to condense the mass and stiffness matrices. The condensation was
performed in three steps. First, the original matrices were condensed along co-
ordinates xg and yg (the angular co-ordinates were eliminated). Then, the matrices were
transferred to system of co-ordinates r, t. Finally, the matrices were condensed to a
final dimension containing only a few normal co-ordinates.

After the condensed mass and stiffness matrices are obtained, the equations of
motion of the flexible sleeve can be adopted as follows:

M K rs s s⋅ ⋅&&r H Cs s s+ = +    (1)

where rs is vector of the retained co-ordinates. Ms and Ks stand for the condensed mass
and stiffness matrices. Hs and Cs represent the hydrodynamic forces due to the
instantaneous oil film pressure p and the chamber pressure pc respectively.

3.2  Modelling of the Hydrodynamic Forces
The configuration of the active bearing is shown in Fig. 3. The pressure distribution of
the oil film is a function of the instantaneous displacements and velocities of the
flexible sleeve and the journal, as well as the rotating speed of the rotor, i.e.,
p= p( , & &)Ω r ,q, r ,qs s . The Reynolds equation was used to model the pressure distribution:
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The thickness of the oil film can be written as:

h h h= +' ∆     (3)
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where ∆h is the deformation of the sleeve which can be obtained by solving Eq. 1.
(The full motion of the flexible sleeve is calculated by a co-ordinate transformation
provided by the Guyan method, after the solution of Eq. 1 is obtained). h′ is the
thickness disregarding the deformation of the flexible sleeve which can be
approximated by:

h c q' cos( )= + ⋅ −ϕ α    (4)

where c is the bearing radial clearance, q and α are the polar co-ordinates of the centre
of the journal.
Then,

∂

∂

∂

∂
ϕ α

∂ α

∂
ϕ α

∂

∂

h

t

q

t
q

t

h

t
= − + ⋅ − +cos( ) sin( )

∆
   (5)

The integration of Eq. 2 produces the oil film pressure distribution p. The principle of
virtual work applied to the instantaneous oil pressure results in the hydrodynamic
forces Hs acting on the flexible sleeve. The same principle applied to the chamber
pressure pc yields the force vector Cs.

4  Modelling of multi-bearing systems with the active bearing

Fig. 4 illustrates a multi-bearing rotor system with a rigid foundation. The system is
statically indeterminate. Its configuration is defined by vector a. The rotor was treated
as a free-free body and was modelled by the FEM using Timoshenko beam elements.
After matrix condensation using the Guyan method, the equations of motion for the
transverse vibration of the rotor can be expressed in the form,

M w + K w = H + Q + Fr r r r r⋅ ⋅&&    (6)

where w is the absolute position vector of the rotor nodes. Mr and Kr are the mass and
stiffness matrices of the rotor. Qr and Fr are static load vector and external excitation
forces acting on the rotor respectively. Hr is the vector of hydrodynamic forces from
the oil film.

The absolute displacements at the nodes of rotor where bearings are present can be
expressed as,

w q ai i i= + i=1,2, ..., m (m − the number of bearings)    (7)
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whereas for all the other nodes,

w qj j= (8)

then, vector w can be expressed as,

w = q +a (9)

The elements of vector a are zero for the nodes where there is no bearing.
Substituting Eq. 9 into Eq. 6, we have,

M q K q H Q K a Fr r r r r r⋅ + ⋅ = + − ⋅ +&& (10)

When the active bearing is present in the system, the hydrodynamic force Hr and Hs

(in Eq. 1) are a non-linear function of the motion of both the journal and the flexible
sleeve of the bearing. Therefore, Eq. 1 and Eq. 10 form a simultaneous set of non-
linear differential equations coupled by the hydrodynamic forces from oil films
governed by Eq. 2.

The hydraulic force from the pressure chamber Cs in Eq. 1 could be divided into a
constant part, Cs0, and a fluctuating part ∆Cs over the constant component, i.e.

C C Cs s0 s= + ∆ (11)

The equations of motion of the system, Eq. 1 and Eq. 10, can be written in a compact
form,

M r K r H Q F C C K a0 r⋅ + ⋅ = + + + + − ⋅&& ∆ (12)

where

M
M 0

0 M
K

K 0

0 K
r

q

r
H

H

H

Q
Q

0
F

F

0
C

0

C
C

0

C
a

a

0

r

s

r

s s

r

s

r r
0

s0 s
r

=








 =









 =









 =











=








 =









 =









 =









 =











, , ,

, , , ,∆
∆

(13)

H refers to the hydrodynamic forces. It is a function of the rotating speed and the
motion of the rotor and the flexible sleeve, i.e. H = H(Ω, r , r& ). Q refers to the static
forces, F the external excitation forces, C0 and ∆C the static and dynamic control
forces from the pressure chamber, K-ar the forces caused by the relative positions of
bearings, or the system configuration parameters, due to the statically indeterminate
property.

Eq. 12 can be solved by numerical integration methods. At each time interval the
Reynolds equation 2 is solved numerically e.g. by the finite element method or the
finite difference method. The authors used the Runge-Kutta method for the numerical
integration and finite difference method for solution of Eq. 2. As it can be expected,
one solution at one operating point generally requires a considerable time using these
numerical methods based on the non-linear model.



5   Linearization of the equations of motion

A linearized model is advantageous in predicting dynamic performance of a non-linear
system in a comprehensive range of operation, as solutions based on a non-linear
model is generally very time consuming.

The non-linearity in Eq. 12 is caused by the non-linear properties of the
hydrodynamic forces of the oil film with respect to the motion of the system. The
linearization of Eq. 12 can be performed by linearizing these forces in a vicinity of an
equilibrium position. Therefore solutions of the equilibrium position is essential for the
linearization procedure.

The steady state equilibrium position of the system can be found by solving the
following static equations,

K r H r 0 Q C K a0 r⋅ = + + − ⋅( , , )Ω (14)

These equations are non-linear and implicit, and can only be solved by numerical
methods. The equations are not a polynomial type. So that a successive substitution
method is suitable to solve it numerically (Carnahan et al., [15]). The recursive
procedure is defined by

K r H r 0 Q C K a0 r⋅ = + + − ⋅+j j1 ( , , )Ω (15)

The successive iterations are interpreted graphically in Fig. 5 (r* refers to the solution
of Eq. 14). Convergence will certainly occur in the case of Fig. 5(a). While in the case
of Fig. 5(b), the iterations of Eq. 15 will fail to converge to solution r*. Some
modifications of Eq. 15 can be made to bring the successive substitutions successful
(Traub, [16]). The modification which is made here is as follows.

K r K r K r H r 0 Q C K a0 r⋅ + ⋅ ⋅ = ⋅ ⋅ + + + − ⋅P Pm m ( , , )Ω (16)

Pm is a coefficient to be chosen to make the iterations convergent. The authors have
found that by choosing a proper value of Pm, the iterations can always converge to an
equilibrium position.

After an equilibrium position is found, the linearization of the equations of motion
is achieved by linearizing the hydrodynamic forces in a vicinity of the equilibrium
position by perturbation methods. The displacement vector and the hydrodynamic
forces can be written in the following forms in a vicinity of an equilibrium position,

r r r H H H0 0= + = +∆ ∆, (17)
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where r0 refers to the equilibrium position (r* in Fig. 5), and H0 the hydrodynamic
forces when the rotor system is at the equilibrium position.

∆H is assumed to be linearly proportional to the displacements and velocities of the
system in a vicinity of the equilibrium position, that is,

∆ ∆ ∆H K r D rH H= − ⋅ − ⋅ &  (18)

where KH and DH are the matrices of the coefficients, which can be defined as stiffness
and damping matrices of the oil films. Introducing Eq. 17 and Eq. 18 into Eq. 12, and
taking the condition of the equilibrium position (Eq. 14) into account, we have the
linearized equations of motion of the rotor-bearing system,

M r D r K K r F CH H⋅ + ⋅ + + ⋅ = +∆ ∆ ∆ ∆&& & ( ) (19)

The elements of matrices KH and DH can be approximated by the following finite
difference calculation,
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where r0+∆r is defined in such a way that only the j-th element of the vector r is
changed by ∆rj with respect to the equilibrium position r0. By the same way, ∆ &r

implies that the value of the j-th element of the vector &r  is ∆ &r j , and all the others are

zero. n is the number of degrees of freedom in the equations of motion, Eq. 12.
Stability analysis can be performed by solving the eigenvalue problem of Eq. 19. The
forced responses are solved under certain excitation forces, normally the centrifugal
forces due to imbalance of the rotor, and the control forces. The equations can also
been used for synthesis of control laws for various control strategies.
The solution of equilibrium position is essential in the linearization procedure. The
stiffness and damping coefficients of the oil films are a function of the equilibrium
position. Therefore, the dynamic characteristic of the system is a function of the
equilibrium position.

6  Modelling and analysis of motion of a laboratory test rig

The techniques developed above have been employed to a laboratory test rig as shown
in Fig. 6. The rig is a three-bearing rotor system. The rotor is two meters long and
weighs 11.24kg. The active bearing is located 663mm from the left ball bearing and

A BC

Fig. 6  A three-bearing rotor test rig
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1037mm from the right one. Some other parameters of the test rig are: bearing diameter
D=50mm; bearing length to diameter ratio L/D=0.8; bearing nominal radial clearance
c=0.3mm; β=105° and Ψ=160° (see Fig. 1 and Fig. 2); thickness of the flexible sleeve
d=5mm; lubricant viscosity η=0.04 Pascal⋅Sec.

The rotor was modelled by the FEM with 26 elements and 104 DOF. The final
condensed model contains only three rotor stations with only 6 DOF. The flexible
sleeve was divided evenly into 20 elements with 60 DOF. The final condensed model
contains only three sleeve stations with 3 DOF. It has been found that the final
condensed models have almost identical eigenvalues and eigenvectors to the original
FEM models up to the second mode for both the rotor and the flexible sleeve. The
accuracy of the third eigenvalue is about 5% for the rotor and 6% for the flexible
sleeve. The three eigenvalues of the condensed models are 10.43Hz, 43.04Hz and
106.38Hz respectively for the rotor, and 490.2Hz, 1754.2Hz and 6175.8Hz respectively
for the flexible sleeve.

Both the non-linear model, Eq. 12, and the linearized model, Eq. 19, have been used
to predict the thresholds of instability, critical speeds and unbalance response of the
test rig in both the system configuration domain and the rotating speed domain. This
paper only presents some simulation results when the chamber pressure in the active
bearing was constant. In the system configuration domain analysis, the rotating speed
was fixed to 50Hz. The active bearing position, relative to the reference line
connecting the centres of two ball bearing, changes vertically only. In other words, the
component of the configuration parameter ax is fixed to zero. It was defined that ay>0,
when the active bearing is above the line and ay<0 if it is below the line. In the rotating
speed domain analysis, the system configuration parameter was assumed to be zero,
i.e. ax=ay=0.

6.1 Equilibrium position calculations

Fig. 7 and Fig. 8 show the equilibrium position of the journal as functions of the
chamber pressure in the configuration domain and the rotating speed domain
respectively. (It is displayed in a non-dimensional form by dividing the actual values
by the bearing nominal clearance). The equilibrium position was obtained by solving
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the static equation, Eq. 14, using the successive iteration method. By integrating non-
linear dynamic equation Eq. 12 in free vibration condition, the journal trajectory and
hence the equilibrium position can also be obtained provided that the equilibrium
position is stable. It has been found that the results, obtained from these two set of
equations by the two different approaches, always agreed very well. Table 1 lists some
examples of comparison between the results from the two methods when ay= −1.85mm
and Ω=50Hz. Solving Eq. 12 was very time consuming, whereas by using the
successive iteration method, the iteration normally converged to an equilibrium very
quickly.

from static model from dynamic model
pc(MPa) x y x y
0.10 0.1583 0.0554 0.154 0.054
0.15 0.2915 0.1234 0.286 0.120
0.20 0.4096 0.2122 0.4060 0.2110
0.25 0.4988 0.3023 0.4987 0.3023

Table 4-1  Comparison of equilibrium position

6.2  Prediction of thresholds of instability
The stability of an equilibrium position can be assessed by either using the linearized
model or the non-linear model. Eigenvalue analysis based on a linearized model is
commonly used to study stability problems as well as to predict critical speeds. If the
real part of one or more eigenvalues has positive value, the equilibrium position is
unstable. In a non-linear model approach, the integration of the non-linear equations of
motion for free vibration can produce trajectories of the rotor. If a trajectory rests on
one point (an equilibrium position), the equilibrium position is stable. If a trajectory is
in a limit cycle or in a chaos pattern, the equilibrium position is then unstable.

By solving the eigenvalue problems, the stability boundaries of the equilibrium
position of the test rig were produced both in the system configuration domain and the
rotating speed domain as shown in Fig. 9 and Fig. 10 respectively. If a combination of
the configuration parameter and the chamber pressure, or the rotating speed and the
chamber pressure, is located in the stable area, the corresponding equilibrium position
is stable. Otherwise, it is unstable. The charts of stability boundaries provide such
important information about the system, that one can select a value of chamber
pressure to be above the pressure threshold of instability to ensure a stable equilibrium
position.



To check the validity of the results obtained from the linearized model, numerical
integration has been used to solve the free response of the system based on the non-
linear equations of motion. An example of such a numerical simulation is shown in
Fig. 11, when ay= −1.85mm, Ω=50Hz, and pc=0.05MPa, 0.1MPa and 0.15MPa
respectively. It is obvious that the journal performs a forward precession in a large
limit cycle when pc=0.05MPa, and its trajectory converges to a stable equilibrium
quickly when pc=0.15MPa. With pc=0.1MPa, the trajectory approaches an equilibrium
position very slowly. Hence, 0.1MPa could be considered as the threshold pressure of
instability under this operation configuration. It is very close to the stability boundary
obtained from the linearized model, which is 0.098MPa as shown in Fig. 9.

6.3  Critical speed calculations
Natural frequencies and critical speeds can be obtained from the imaginary parts of
eigenvalues by eigenvalue analysis based on the linearized model. Fig. 12 shows the
imaginary parts of eigenvalues (natural frequencies) as a function of rotating speed
when the chamber pressure was fixed to 0.4MPa. (Two curves of natural frequencies
corresponding to the flexible sleeve are not plotted in the chart because their values are
too high to be fitted in the scale). The critical speeds of the rotor, read from the
intersections of the dotted line (Im=Ω) with the curves of the natural frequencies, are
39Hz and 90Hz respectively.

The critical speed can also be predicted by numerical simulations based on the non-
linear model. Fig. 13 displays a waterfall diagram of the unbalance response of the
journal when pc=0.4MPa. The diagram was obtained by numerical integration of the
non-linear equation, Eq. 12. The synchronous harmonic of the unbalance response is
shown in Fig. 14. The first and second critical speed, read from the graph, are 39Hz
and 91Hz respectively which are very close to those from the eigenvalue analysis. It
can be noticed that except the synchronous vibration, sub-harmonic and harmonic
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vibrations can also be observed from the non-linear simulation which cannot be
obtained from the linearized model. It should be indicated that such a simulation of the
waterfall diagram based on the non-linear model is very time consuming.

7  Conclusions

The presented mathematical model can be used to predict dynamic behaviours of
multi-bearing rotor systems incorporating the presented active journal bearing.
Solutions obtained from the non-linear and linearized models are consistent. The
linearized model is specially suitable for a overall investigation of the system
characteristics over a wide range of system configuration parameters and the rotating
speed in which numerous combinations of configuration parameters need to be
analysed. Eigenvalue analysis based on the linearized model provides information of
critical speeds and instability thresholds at the same time, while one sample solution of
the non-linear equations of motion by numerical integration requires a considerable
computing time. Numerical simulations based on the non-linear model provide not
only a measure to verify the validity of results from the linearized model, it also
provides some important information about the system, e.g. the details of the
subharmonic whirling motion of the journal caused by the bearing oil film and limit
cycles which cannot be obtained from the linearized model.

Computation time can be greatly reduced by employing the Guyan condensation
technique. It actually made the solution by numerical integration of the non-linear
equations of motion feasible in the calculations presented in this paper.

The developed non-linear and linearized equations of motion were also used in
control law synthesis in forced vibration control by the proposed active journal bearng
using both an open-loop approach and a feedback system. The results will be presented
in other papers.
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