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ABSTRACT We investigate the solutions of partial differential equations describing a two-layered fluid
system. The lower layer contains a fastly diffusing, stabilizing substance T and a slowly diffusing, desta-
bilizing substance S. The upper layer contains only the solvent. Double-diffusive convection yields cells
in agreement with experiments performed with a tenside (S) and glycerine (T) dissolved in water.
Approximation of the PDEs renders scaling laws for the appearance time Tem of the cells and their
wavelength λ, as functions of the initial concentrations S0 and T0, as well as λ as a function of time.
These approximations agree well with the solutions of the PDEs.
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INTRODUCTION

Double-diffusive convection results from an
instability at an interface between two fluid layers.1-

3 Such layers contain different amounts of a slowly
diffusing, gravitationally destabilizing dissolved
substance S and a fastly diffusing, stabilizing dis-
solved substance T.  The instability is counterintuitive
at first glance; in fact, if one considers only the total
densities and not their composition, the layers would
be stable.

A fluctuation at the interface causing a protrusion
P from layer L1 to layer L2, may be depleted of T
fastly enough by diffusion, so that S in P can abandon
L1 and P grows.  As examples for two horizontal
layers: i) S (heavier than water, but diffusing slowly)
and T (lighter than water, but diffusing fastly) are
layered above water; ii) S (lighter than water, but
diffusing slowly) and T (heavier than water, but
diffusing fastly) are layered below water.

In general, the protrusions initially self-organize
into a cell structure at the interface.4  Later on,
protrusions grow as fingers from the vertices of the
cells.  Such a process causes deeply disposed sewage
to rise upwards from the bottom of the sea2, 5, it
occurs at melting icebergs (a situation relevant to
the projects of obtaining fresh water from icebergs
towed to warmer coasts)6-8, it disturbs the homo-
geneous crystallisation of alloys9, and it accounts for
the formation of salt fingers at the outflow of the
mediterranean over the Atlantic10, 11 (situation i) in
the last paragraph); also, it appears in calculations
of the stellar interiors12 and the earth’s magma.13

Typical quantitative characteristics of a variety of
systems are given in.14

PARTIAL DIFFERENTIAL EQUATIONS AND THEIR
EXPERIMENTAL PARAMETRIZATION

We consider the general PDEs for an incom-
pressible, hydrodynamic system with two dissolved
substances S and T:

∂ ∂ υ υ υ ρ ρ ρ υ/ ( ) /t p v
r rr r r r r+ ∇ = ∇ +0 0g -1/ ∆ (1)

r r∇ =( )ρυ 0 (2)

∂ ∂ υ/ ( )tS S D SS+ ∇ =rr ∆ (3)

∂ ∂ υ/ ( )tT T D TT+ ∇ =rr ∆ (4)

ρ ρ α α/ 0 1= + −T ST S (5)

DT and DS are the diffusion coefficients, p the
pressure,   

rυ  the fluid velocity, ρ its density, ρ0 the
density of the solvent, v the kinematic viscosity, αT

= (ρT -ρ0)/ρ0, αS = (ρ0-ρS)/ρ0.  Eq (1) is the Navier-
Stokes equation, Eq (2) the equation of continuity,
Eqs (3) and (4) describe the diffusion and advection
of S and T, Eq (5) is the equation of state.  In 3D,
these are 6 scalar equations for the variables   

rυ , S, T
and p.   At t = 0 we set a linear height profile for S
and T ranging from T0 and S0 at z = 0 to 0 for z ≥ 0.3

mm;   
rυ  at t = 0 was set to     

r
0 .  T0 and S0 at t = 0 were
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varied throught this work.  In order to initialize the
unstable behaviour, we superposed equally dis-
tributed noise with a relative amplitude of 1% on
the variables S and T at t = 0.  The equations were
integrated using the finite volume method on a
colocated grid with an implicit three time level
scheme, central difference scheme and the SIMPLE
algorithm for pressure correction.15  We set periodic
boundary conditions in x and y direction; at the
bottom and the top we imposed no-slip boundary
conditions for the velocity and no-flux boundary
conditions for the solutes.  We set the uniform grid
size to 5x10-3 mm and the simulated domain to 0.8x
0.8x0.8 mm3 for initial conditions leading to wave-
lengths below 0.25 mm; otherwise, we set a grid size
of 1x10-2 mm and a domain of 1.2x1.2x1.2 mm3.
The time step was set to ∆t = 0.05 s for setups leading
to typical pattern formation times below 300 s and
∆t = 0.1 s otherwise.

EXPERIMENTS AND PDE SOLUTIONS

In order to solve Eqs (1)-(5) numerically we need
parameters of a concrete physical system.  We consider
a system that we have deviced ourselves, having the
advantage that it costs only a few dollars and leads
to structures within minutes; note that processes of
this kind may take hours16 or days.4  The cells in our
device can be observed with an ordinary light
microscope; needle-like fingers growing out from the
vertices of these cells are visible to the bare eye.  In
this system, the solvent is water, T is glycerin and S
is an alcohol ethoxylate (nonionic tenside) with 12
carbons in the hydrophobic chain and 16 carbons
in the hydrophilic chain.17  αT = 26 vol%-1, αS = 5
vol%-1.  We set v = 1.1x10-6m2/s; capillary viscosimeter
measurements showed that this value does not vary
significantly within the ranges of S and T considered
here.  The diffusion coefficient of glycerine is DT =
10-10m2/s.

We performed X-ray small angle scattering
measurements.  These measurements revealed that
the tenside forms micelles having the shape of long
rods (diameter ≈ 48 Å, length ≈ 4000 Å).  The
elongation of the micelles increases the diffusion
coefficient by a factor of 3.4, as compared to that of
a sphere of equal diameter.18  The elongation of
glycerine molecules can be neglected in this respect,
so that one can approximate them by a sphere having
a diameter of 5 Å.  Considering that the diffusion
coefficient of a sphere is inversely proportional to
its radius (Stokes law), we can estimate here DT /DS

≈ 33 and we thus set DS = 3x10-12m2/s.

The integration of Eqs (1)-(5), setting S0 = 5 vol%,
T0 = 5 vol% and using the parameters given above
yielded Fig 1a.  These simulations compare well with
experiments (Fig 1b) using the setup described in
the figure caption.

APPROXIMATIONS AND SCALING LAWS

In this section we will derive simple, approximate
exponential expressions (scaling laws) for the time
of appearance Tem of the cells, as well as for their
wavelength λ at t = Tem, as functions of the initial
concentrations T0 and S0.  In the next section we will
compare these scaling laws with the exact results
obtained by numerical integration of the PDEs.  In
previous works, scaling laws for the height of the
fingers, as well as for the flux of the substances have
been reported.19, 20

If a linear analysis is performed around the
solution of the equations at time t, perturbations
grow ~ exp(Λ(z, t) t).  (We hold x and y at some
fixed, but arbitrary value).  In experiments the z-
dependence is eliminated by evaluating the total
vertically absorbed light intensity.  The absorbtion
process follows a geometrical progression as light
proceeds from one infinitesimal layer to the next.
The product (over all infinitesimal layers along the
z-direction) of the exponentially growing perturbation
is thus exp(Λ(t)),
where

    
Λ Λ( ) ( , ) .

( )
t z t dz

h t= ∫
0

(6)

Here, h(t) is the maximum z at which double-
diffusive convection occurs.  For our evaluation of
the PDE solutions (determination of the cell appearance
time and the wavelength) we programmed the eli-
mination of the z-dependence that we just described,
so that the PDE evaluation is comparable to experi-
mental observations.  h(t) is determined as the
maximum value of z at which the condition

( ) /( ) /α β α βS S T T S TD D> (7)

for double-diffusive convection21 is fulfilled.

β ∂ ∂ β ∂ ∂T ST z S z= − = −/ , / .

We want to determine the time Tem for which an
evaluated perturbation has grown by a given factor
F.  Thus,
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thus aim to obtain Λ(z, t) from Eq (10) by proper
substitutions of βC (C : S, T).  For sufficiently large
times, and consistently with the times considered in
this work, the diffusion equation renders the profile

      C z t
HC

D t
z D t

C

C( , ) exp /( ) ,= −[ ]0 2

2
4

π
(12)

H is the initial height.  Eq (12) allows to calculate βC

= -∂C/∂z (C : S, T), which can be inserted in Eq (10).
Considering DT >> DS one obtains

      Λ( , ) ~ exp /( ) .
/
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Inserting βC in inequality (7) and considering DT >>
DS, one sees that this inequality holds for z < h(t),
where

    h t f S T t( ) ( , ) /= 0 0

1 2 (14)

          f S T D S T qS( , ) ( ( / ) )/ /

0 0

1 2

0 0

1 22= +In In (15)

     
    
= [ ]∫exp ( ) ,Λ t dt

Tem

0
(8)

where N = Tem/∆t.  Inserting Eq (6) in Eq (8) leads to

    
F z t dz dt

h tTem= [ ]∫∫exp ( , ) .
( ) Λ

00
(9)

Λ has been estimated by Stern21 as

Λ = 1

2

gD

v
T

T T

S Sα β
α β . (10)

Furthermore, Stern21 estimated the wavelength as

    

λ π
α

β≈










−4
1

4 1

4
vD

g
T

T

T . (11)

In the works published so far, one has not considered
that Stern’s approximations are functions of time
owing to the fact that the concentration gradients
βT and βS change due to diffusion.  We will correct
this in the present work by considering the evolution
of the spatial profile of S and T in z-direction.  We

Fig 1. Self-organization of two homogeneous, horizontal layers. (a) Simulations using Eqs (1) through (5); from left to right: the first
picture shows the homogeneous distribution at t ≈ 0, the second one the first visible cells (t=80 s), and the third one (t=160 s)
the fully formed cells with accumulation of S (darker spots) at the vertices.  (b) Experiments using a layer of water above a layer
of a solution of tenside (S) and glycerine (T) in water; the basis of the layers had dimensions 1.6 x1.2 mm; both layer heights
were ≈ 0.3 mm; left picture: start with S=T=5 vol%; from left to right: t=30; 70; 100 s; light absorbtion causes S to appear dark.
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meter that is free to be adjusted in fitting procedures.
The valuable information of Eqs (19) and (21)
resides in the exponents of S0 and T0.  In Fig 2 we
test these scaling exponents (given by the slopes)
and freely adjust F (given by the ordinate intercepts).
The isolated diamonds in Fig 2 result from the
integration of the PDE-system (Eqs (1)-(5)).  The
dotted straight lines display the scaling laws given
by Eqs (19) and (21).

Fig 2a tests Eq (19) for S0 = T0; it thus tests

    T C C T Sem ~ ( )./

0

1 2

0 0 0

− = =   Fig 2b tests Eq (19) at S0

= const.; it thus tests     T Tem ~ ./

0

1 2   Fig 2c tests Eq (19)

at T0 = const, thus testing     T Sem ~ .0

1−   Fig 2d tests Eq

(21) for     S T C C T S0 0 0

3 8

0 0 0= = =−, ~ , ( )./ie λ   Fig 2e

tests Eq (21) for     S T0 0

1 8

=
−

Const ie, ~ .
/

λ   Fig 2f tests

Eq (21) for     T S0 0

1 4

=
−

Const ie, ~ .
/

λ   Fig 3 tests Eq

(20),     ie λ ~ .t
1

4   Note that the scaling laws only fail
at the right of Fig 2f and fail slightly at the left of
Fig   2e, which indicates that the approximations
made in the previous section do not hold in those
ranges.

CONCLUSIONS

The exponential dependences on S0, T0 and t, as
given in Eqs (19), (20) and (21), satisfactorily describe
the very complicated hydrodynamic processes
contained in the partial differential equations (1)-
(5).  It is left to future work to verify these scaling
exponents experimentally.  In addition, the lines of
thought presented here may serve, in the future, as
a guide for other double-diffusive convective systems.
In some of the systems mentioned in the Introduc-
tion (alloys, sewage, icebergs, stars or magma), the
time of appearance Tem and the wavelength λ are
observable quantities that characterize the processes
in a global way.  The existence of scaling laws, such
as those presented here, are useful descriptions,
insofar as they allow — for practical purposes — a
considerable reduction of the systems’ complexity.
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q = (αS/αT)(DT/DS)
5/2.  Considering Eqs (13), (14)

and (15) one obtains
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with 
    
Γ( , ) .x a u e dux u

a
= − −∞∫ 1   Note that the right

hand side of Eq (16) is independent of time.  For
the ranges of S0 and T0 and for the parameters in our
system, the Gamma function at the right in Eq (16)

can be neglected, as compared to 
  
Γ( , ).3

4
0   Thus,
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0 00
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Inserting Eq (17) in Eq (9) yields

    
F S T dt

Tem~ exp ,/

0 0

1 2

0

−∫[ ] (18)

ie the scaling law

T F S Tem ~ ( ) ./In 0

1

0

1 2− (19)

In order to estimate λ, we approximate βT (z, t) by
its mean in the z-interval [0, h(t)]; inserting the result
in Eq (11) and eliminating terms by considering the
system parameters yields

    

λ ~ .
t

T0

1

4







 (20)

Setting t = Tem as given by the relation (19) finally
renders the scaling law

    λ ~ ( ) .In F T S
1

4

1

8

1

4

0 0

− −
(21)

RESULTS AND DISCUSSION.

Note that both scaling laws Eqs (19) and (21)
have a well defined proportionality constant and a
factor that depends on F.  F, being defined as the
factor by which fluctuations increase, depends on
the initial fluctuations, which are unknown and may
change from system to system, both in experiments
and simulations.  We therefore consider F as a para-
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Fig 2. Solutions of partial differential equations (diamonds), as compared to exponential scaling laws (straight, dotted lines given by
Eqs (19) and (20)).  Ordinates: cell appearance time Tem in (a-c), wavelength λ at t=Tem in (d-f).  Abscissas show the initial
concentrations T0, S0: T0=S0 in (a,d),T0 for S0=5 vol% in (b,e), S0 for T0=5 vol% in (c,f).
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